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1. List of symbols 

Symbol Description unit 

µ-CT 
A unit of measurement commonly used in micro-CT to 

express spatial resolution or voxel size 
Meter 

R The achievable resolution in the object of a CT-system  

S The spot size of the X-ray source p.p.s. mm−2 

d The resolution of the detector Kev 

M The magnification of a CT system - 

dc The x-ray source and object distance m 

dd The object-detector distance of a CT-system m 

x The lenses radius m 

I 
The intensity of light or radiation after it has passed through 

a material 
R (roentgen) 

I0 
The initial or incident intensity of light or radiation before it 

interacts with the material. 
R (roentgen) 

e The base of natural algorithm - 

µ The linear attenuation coefficient of the material HU 

x The length of the X-ray path through the material m 

S The entropy of the system Joule/Kelvin 

𝑷𝒋 Is the probability that the system is at state 𝑗 - 
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K Is the Boltzmann constant - 

W The number of states in the system - 

A A type-1 fuzzy set A in a finite set x - 

𝝁𝑨(x) The membership function - 

𝝁𝑨
𝑯𝒊𝒈𝒉

 Upper membership function - 

𝝁𝑨
𝑳𝒐𝒘 Lower membership function - 

hi Image histogram and i level of intensity - 

NP Total number of pixels contained in the image - 

Pk The ultra-fuzziness of level of intensity - 

Fek Type 2 fuzzy entropy of kth threshold - 

Tfe Total entropy - 

P(𝒄𝒌|x) posterior probability of an event 𝑥 belongs to a class 𝑘 - 

P (𝒄𝒌) The Probability of 𝑐𝑘 occurring - 

P(x) The probability of 𝑥 occurring - 

x is a 𝑛-dimensional vector - 
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3. Summary 

The accurate characterization of pore structures in carbonate rocks is crucial for understanding 

their petrophysical characteristics. These rocks possess intricate pore systems with varying 

interconnectivity, which significantly influence their properties. To accurately calculate these 

attributes, pore network models rely on capturing the complex geometry and topology of the 

pore network. High-resolution X-ray computed tomography (CT) has emerged as a valuable 

technology for geological investigations due to its non-destructive nature and ability to generate 

detailed images that closely resemble serial sections of the object. 

In this context, image segmentation plays a vital role in interpreting and evaluating X-ray 

tomographic images. Successful pore network modeling depends on effectively representing 

the real pore space in terms of its geometric and topological characteristics. In CT scans, image 

segmentation separates the pore phase from the solid phase, enabling the extraction of important 

properties such as pore size distribution (PSD), connectivity, and tortuosity. Therefore, accurate 

image segmentation serves as the initial step in pore network modeling and analysis. 

Various techniques for image segmentation have been reported in the literature. However, there 

is no universal algorithm that consistently produces accurate results for all types of data. In my 

Ph.D thesis, my objective is to conduct a comprehensive research study that encompasses three 

key components: image segmentation, a comparative microfacies analysis between productive 

and dry intervals, and petrophysical characterization. These elements are equally important in 

achieving reliable results and contributing to the field of reservoir characterization and 

evaluation. To accomplish this; firstly, I focus on evaluating the performance of different 

machine learning (ML) techniques, including clustering and entropy techniques, for image 

classification. Through the development of a workflow for unsupervised machine learning 

(ML), incorporating methods such as naive Bayes and cross-validation, I aim to create a pixel 

classification scheme that effectively distinguishes between different elements within the 

image. This scheme will lead to more accurate segmentation and enable the identification and 

analysis of pore properties within the 3D pore network. 
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Secondly, I integrate microfacies analysis of thin sections obtained from the same core samples 

into my research. By combining these findings with the results obtained from image 

segmentation and pore property analysis, I can evaluate reservoir rock samples from both dry 

and productive intervals. This comparative analysis allows for a comprehensive understanding 

of the variations in pore properties and their potential implications for reservoir performance. 

Lastly, petrophysical characterization is a fundamental aspect of the research. By quantifying 

and analyzing various petrophysical properties, such as pore size distribution, connectivity, and 

tortuosity. My aim was to gain a comprehensive understanding of the reservoir rocks. These 

petrophysical characteristics directly impact the behavior and performance of the reservoir, 

making their accurate characterization crucial for effective decision-making. 

In summary, my Ph.D. thesis revolves around three interconnected components: accurate image 

segmentation, a comparative microfacies analysis between productive and dry intervals, and 

petrophysical characterization. By enhancing image segmentation, conducting a thorough 

comparative analysis, and quantifying petrophysical properties, I aim to contribute to the field 

of reservoir characterization and evaluation. The comprehensive insights gained from this 

research will aid in making decisions within the oil and gas industry 
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4. Introduction 

Carbonate reservoir rocks have a complicated pore system as a result of sedimentological and 

diagenetic processes (Scoffin 1987; Arns et al. 2004; Flügel 2004).  

Contrary to siliciclastic reservoirs, where the main component is the chemically resistant quartz, 

carbonate minerals (calcite and aragonite) are very susceptible to extensive diagenetic change. 

Carbonate minerals are susceptible to rapid dissolution, cementation, recrystallization and 

replacement at ambient conditions in a variety of diagenetic environments or during a 

succession of diagenetic episodes.  

Dissolution of carbonate minerals plays a determining role in the development of the pore 

system. This intricacy frequently results in a lack of interrelationships between porosity and 

permeability, making it difficult to characterize fluid flow through carbonates (Arns et al. 2004).  

In the cases of XCT analyses, the very first step should be understanding the diagenetic history. 

Only that knowledge can make sure, that the selected small volumes can be representative of 

all the processes affecting the pore system. Also, such information can determine what 

petrophysical characters we can expect. E.g., in the case of bio-mold porosity, we can expect 

quite a high total, but low or moderate effective porosity, low pore connectivity, and 

consequently low permeability. We can also expect that the large-scale poro-perm correlation 

will be very low (if any). 

In recent years, the use of micro X-ray computer tomography (micro-XCT) imaging to assess 

the pore space of reservoir rocks has grown in popularity. This technique generates 3D pore 

network at micron scale (Brunke et al. 2010), which can provide valuable information on the 

complex pore system of rock samples and their interrelationships between porosity and 

permeability. Prior to the availability of micro-XCT, 3D pore characterization could only be 

accomplished using statistical models to reconstruct 3D porous media from 2D thin section 

images (Hazlett 1995) or process-based models (Øren and Bakke 2002). Both statistical and 

process-based models have merits, but with the recent advancements in X-ray technology, 

complicated pore-networks in 3D down to sub-micron scale may now be seen (Brunke et al. 

2007). 3D pore-network representation can improve the understanding of the evolution of 

porosity and permeability of a rock sample (Youssef et al. 2007a, b). 
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Al-Kharusi et al. (2007) showed the efficacy of micro XCT imaging for characterizing the pore 

space in sandstone and carbonate rocks. The authors demonstrated that this technique enables 

them to visualize the complicated pore network as well as identify different pore types and their 

interconnectedness. This data can be utilized to gain a better understanding of the processes that 

affect fluid flow in reservoir rocks. Chauhan et al. (2016) is another study further emphasized 

the relevance of using 3D pore-network representations generated by micro XCT imaging to 

improve the understanding of porosity and permeability evolution in rock samples. The authors 

used this technique to investigate the pore-scale mechanisms that control fluid flow in carbonate 

rocks and showed that the pore network geometry plays a critical role in determining the 

permeability of these rocks. 

 In general, laboratory experiments or well logs can be used to assess the porosity of reservoir 

rocks. These measurements can provide data on the overall pore space. Unfortunately, we 

cannot go any farther in characterizing the pore organization, such as connectivity and 

coordination number, in these circumstances. Another limitation of these measures is that they 

cannot provide a three-dimensional dispersion of the pore network. Current improvements in 

X-ray microcomputed tomography enable a solution to this problem by quantifying pore 

network geometry from high-resolution 3D images (Al-Ansi et al. 2013, Andr an et al. 2013). 

The use of X-ray CT and image analysis has improved 3D material characterisation, particularly 

for pore network geometry studies. 

To a large extent the success of pore network models (PNM) depends on the way they represent 

the real pore space in terms of its geometrical and topological characteristics for a given 

application (Xiong et al. 2016). In CT scans, the pore space is segmented from the solid phase, 

yielding important geometrical properties such as pore size distribution (PSD), connectivity, 

and tortuosity. Therefore, accurate image segmentation (separating the pore phase from the solid 

one) is the first step toward pore network modelling and analysis (Gonzalez and Woods 2008). 

The literature reports a variety of techniques for image segmentation, nevertheless, no universal 

segmentation algorithm can produce consistent results for every type of data (Wildenschild and 

Sheppard 2013). Leu et.al (2014) stated in their sensitivity study that segmentation stage will 

determine the success or failure of the final results, where they demonstrate that small bias in 

the accuracy of the binarization may cause a significant error in the calculated permeability.  
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However, the PNM has the highest geological uncertainty in the modeling process. It is because 

the analyzer does not have any base to decide whether the applied cutoff/threshold value fits the 

pores/voids of the studied volume. In fact, the thin sections can help in that decision. But, the 

2D discrete reality they can show cannot be used to derive either the 3D distribution or the 3D 

geometry. So all-in-all, PNM is a model, which must be validated from both geological and 

mathematical points of view. The mathematical validation is quite a smooth process. To perform 

a geological validation one can use only the comparison of the result of the geological 

interpretation of the PNM and the preliminary expectations. If they fit, the result is fine. If they 

do not fit, the whole modeling process should be reorganized. 

Image segmentation is a critical step in the analysis of micro-CT images of porous materials. 

However, due to the inherent heterogeneity in the features of the materials as well as the imaging 

parameters used to obtain the data, no universal segmentation method can generate consistent 

results for every type of data. As a result, the development of advanced learning algorithms for 

image segmentation is crucial for improving process's accuracy and efficiency. The research 

objective of this study is to comprehensively investigate the optimal advanced learning 

strategies for analyzing pore space and measuring porosity in carbonate rock samples using 

high-resolution X-ray micro-CT images. To achieve this objective, the study incorporates 

several key components: image segmentation, a comparative analysis of sedimentological and 

diagenetic history between productive and dry intervals, and microfacies analysis to compare 

the structure of productive and dry intervals. 

The research objective of this study is to investigate and compare the pore network 

characteristics and petrophysical properties in two distinct intervals: a dry interval and a 

productive interval. The study aims to comprehensively analyze and understand the differences 

in pore network geometry, connectivity, and petrophysical properties between these two 

intervals. 

To achieve my goal I have implemented several steps: 

-Firstly I evaluated and compared different machine learning (ML) techniques, including 

clustering and entropy techniques, to achieve accurate image segmentation. By developing a 

workflow that integrates unsupervised machine learning methods such as naive Bayes and 

cross-validation, the study seeks to create a robust pixel classification scheme that effectively 
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identifies and distinguishes various elements within the images. This will enable accurate 

segmentation and facilitate the analysis of pore properties within the three-dimensional pore 

network. 

-Secondly I conducted a comparative analysis of sedimentological and diagenetic history 

between the productive and dry intervals. By examining the sedimentological characteristics 

and diagenetic processes that have influenced the formation of the intervals, the study aims to 

understand the factors contributing to their contrasting productivity. This analysis will provide 

valuable insights into the relationship between geological features and reservoir performance. 

-Thirdly, microfacies analysis is integrated into the research to compare the structure of the 

productive and dry intervals. By examining thin sections obtained from the same core samples, 

the study aims to identify and characterize the microfacies present in each interval. This analysis 

will provide valuable information on the differences in pore network geometry and micro-scale 

features between the productive and dry intervals. With the help of microfacies analysis it is 

possible to reconstruct the sedimentological and diagenetic evolution of the productive and dry 

samples. It allows us to answer the question why is one part of the limestone is productive and 

the other is dry. 

By combining image segmentation, comparative sedimentological and diagenetic analysis, and 

microfacies analysis, the study seeks to address the research gap and gain a comprehensive 

understanding of the relationship between pore network geometry, sedimentological 

characteristics, and reservoir productivity. The findings of this study will contribute to the 

advancement of reservoir characterization and evaluation techniques, enabling more effective 

optimization of oil recovery strategies.  

Moreover, this is the first study to use high-resolution X-ray micro-CT scans to not only 

compare the pore network geometry of carbonate rock samples from these two intervals, but 

also delve into the diagenetic and sedimentological process that shaped them. This research gap 

is relevant because it has the potential to provide insights into the relationship between the pore 

network geometry and the productivity of the oil well, which can have important implications 

for the petroleum industry and could be useful for optimizing oil recovery strategies. 
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It is noteworthy, that most of the XCT instruments have a fixed focal point, the smaller the 

sample size/volume the smaller the pore diameter which can be revealed. One cannot view and 

analyze anything below the resolution. Consequently, only the flow properties determined by 

pores with pore diameters being not smaller than the resolution can be studied. Sometimes it is 

enough to derive general flow characters. One must keep in mind that even the 0.5-micron 

resolution is not enough to study the physisorption processes. The upper limit of the possible 

pore diameters is determined by the size of the measured volume. This fact excludes the 

analyses of fractured porosity. The result of the above derivations is that a PNM is useful, 

though its ability to show flow characteristics is strongly limited by the resolution of the 

scanning process. It is not a problem but must be emphasized correctly. 
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5. Literature review  

5.1 Pore space imaging 

5.1.1 Serial sectioning 

Several methods have been proposed to visualize 3D microstructure. Serial sectioning method 

for 3D imaging can be achieved, when consecutive thin sections of the materials are removed 

one at a time and exposed surfaces are imaged at a high-resolution. Then, the 3D visualization 

can be obtained by stacking 2D serial sections (Lymberopoulos and Payatakes 1992). However, 

this method is considered to be time consuming due to the fact of a long laborious process. 

Moreover, laborious operation is restricted because preparing cross sections with a spacing of 

less than around 10 µm is impossible (Dullien 1992). Another drawback is the limitation of the 

number of the slices that can be obtained in one hour, which ranges in-between 5-20 slices 

reported by Spowart (2003), which makes unsuitable for imaging representative rock volume 

with heteroginity. Additionally serial sections analysis does not account for throats of small size 

making the prediction of the flow properties questionable (Koplik et al. 1984). The work flow 

of conventional serial sectioning is illustrated in Figure1. 

 

Figure 1 Flow chart of serial sectioning to obtain 3D images of porous media (Chawla et al., 2006). 



25 
 

  

Recently, a new method has emerged which combines serial sectioning and focused ion beam 

(FIB) technology (Tomutsa and Radmilovic 2003, Tomutsa and Silin 2004). This method allows 

the imaging of higher resolution at a sub-micron resolution of the microstructure of the 

geological materials such as shown in Figure 2 

 

 

Figure 2 Images in 2D: a) FIB image of dolomite c) image of dolomite where ;(b,d) are their 3D 

reconstruction images based on FIB serial sectioning. The reconstructions are from successive 

binarized FIB images spaced at 0.1 μm. The pore space is black (Tomutsa et al. 2007). 



26 
 

The FIB was used to mill layers as thin as 100 nanometers and as wide as 50 micrometers by 

sputtering atoms off the sample surface. FIB uses a focused beam of gallium ions (Ga+) 

accelerated to an energy of 5-50 keV and then focused onto the sample by electrostatic lenses, 

creating images with a spot size down to nanometer. Despite the fact that this technology has a 

great deal of potential for imaging hydrocarbon-bearing rocks at high resolution and creates 

images of greater quality than electron beam imaging, it is still significantly time consuming 

due to the refocusing between milling and imaging as well as the sample repositioning (Tomutsa 

et al. 2007) 

5.1.2 Stochastic reconstruction using statistical methods 2D 

Contrary to 3D images, 2D thin sections are often available at high resolution, which make it 

suitable for studying geometrical properties such as micro porosity. Two point correlation 

function and porosity can be measured using thin sections and used to generate a 3D image with 

the same statistical properties.   

3D images can be reconstructed using statistical methods with information obtained by 

analyzing 2D thin sections. Finding appropriate morphological descriptors that replicate the 

microstructure of porous materials is essential. Allowing a wide variety of porous media to be 

described. The geometrical properties of the original pore space are often used with a truncated 

Gaussian random field to reconstruct 3D images (Quiblier 1984). These geometrical properties 

such as porosity, one point correlation function and two points correlation function (measuring 

the probability of finding two points separated by a certain distance within the same phases) can 

be measured from these thin sections and used based on conditioning and truncation of Gaussian 

random fields to generate a 3D binary image given its porosity and two-point autocorrelation 

function (Quiblier 1984, Adler et al. 1992, Roberts 1997). These two constraints are found to 

be insufficient to reproduce the microstructure of particular media such as grains or sphere packs 

(Hazlett 1995, Levitz 1998, Kainourgiakis et al. 2000). Another useful method used to 

characterize the microstructure is the cord length distribution (Roberts and Torquato 1999, 

Levitz 1998). The pore chord length is the length of the line through the pore space between 

two solid voxels. It is used as a descriptor to characterize the pore geometry. The cord length 

distribution functions are calculated by counting the number of chords of a given length. The 

chord functions have been used to generate a 3D microstructure and for predicting the 
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microscopic properties (Roberts 1997, Hidajat et al. 2002). These descriptors surpass the simple 

one- and two- point correlation functions in characterizing the structure while these methods 

contain some connectedness information along the line and reflect a wide range of information 

over the system. Hence this combination between the two-point correlation function and the 

chord length distribution can further improve the resulting 3D microstructure and can better 

describe the microscopic properties such as permeability (Talukdar et al. 2002). 

5.1.3 Process based reconstruction 

Contrary to other statistical models process based reconstruction try to take into account the 

physical processes that create the pore space. Bryant et al (1993) developed a process-based 

model for sedimentary rocks by modeling different rock forming process such as compaction 

and cementation on a packing of equal spheres constructed by Finney (1968). For instance, 

diagenesis was modeled by uniformly swelling the spheres and allowing them to overlap and 

compaction was modeled by moving the centers of the spheres vertically and bring them closer 

together also allowing them to overlap. This approach has shown how different geological 

processes affect the pore structure hence the permeability of sedimentary rocks (cade 1994).  

Using this method, they were able to predict the absolute and relative permeability, capillary 

pressure, and electrical and elastic properties of water-wet, sand pack, sphere packs, and a 

cemented quartz sandstone. This was a major advancement in pore scale modeling.  However, 

the predict ability of the model was restricted by the assumption of constant grain size. Bakke 

and Øren (1997) developed a process-based reconstruction method where different sized 

spheres were included, to simulate more sophisticated geological process. Such as 

sedimentation, and diagenesis processes. The grain size distribution was obtained from direct 

analysis of the 2D thin sections taking from the rock. The diagenesis were similarly modeled in 

the work of Bryant et al (1993). The stochastic models have a poor representation to the real 

sandstone Biswal et al. (1999) whereas the geological reconstruction models gave a good 

representation of the pores connectivity leading to accurate prediction of the transport properties 

(Øren and Bakke 2002). Several studies tried to extend this work to simulate the deposition of 

non-spherical shaped grains so the model can be generalized to include other types of rocks 

(Pilotti 2000, Coehlo et al. 1997) Figure 3 comparing micro-Ct and process based image. 
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Figure 3 Fontainebleau sandstone 3D pore comparison a) of a micro-CT image and b) process based 

image (Øren and Bakke 2002). 
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5.1.4 X-ray computed tomography XCT 

All of the previous methods aim to produce a 3D representation of the pore structure. However, 

as it was mentioned earlier, they all have their own limitations. X-ray computed tomography or 

XCT is another technique for depicting the internal structure of a reservoir rocks and obtaining 

a 3D representation. It is a non-destructive technique which can be used to visualize the internal 

structure of a study object. 

CT was invented in the 1972 by British engineer Godfrey Hounsfield of EMI laboratories, 

England and by Allan Cormack physicist Tufts University, Massachusetts. Hounsfield and 

Cormack received a Nobel Prize in Physiology and Medicine for 1979 for their contributions to 

medicine and science. The first micro-CT system was built and conceived by Jim Elliott in the 

early 1980s (Elliott and Dover 1982). The micro-CT technology has been developed and the 

possibility of its use in geological and petroleum engineering was soon recognized (Dunsmuir 

et al. 1991).  

Since its invention in the 1970s, X-ray computed tomography (CT) has spread and developed 

quickly, mostly stimulated by growing medical needs for diagnostic procedures and 

interventions. The X-ray CT has been used in different fields of geosciences, such as studying 

microstructural and rock physical properties of geological media, aiding and enhancing 

production in petroleum geology, or assessing soil contamination or waste repository issues in 

environmental geology (Cnudde et al. 2006). CT enables the analysis of the interior features of 

core samples, including bedding features, sedimentary structures, natural and coring-induced 

fractures, cement distribution, small-scale grain size variation, and density variation (Coles et 

al., 1991; Orsi et al., 1994; Coles et al., 1998). This method has a wide application in 

geosciences, including analyses of the complex porosity and pore geometry of carbonate 

reservoirs (Purcell et al., 2009), rock-fluid analysis (Pyraknolte et al., 1997; Purcell et al., 2009; 

Wennberg et al., 2009), the performance of diverting agents in unconsolidated sandstones 

(Vinegar and Wellington, 1987; Wellington & Vinegar, 1987; RIBEIRO et al., 2007A), and 

many other topics. For instance, Bonner et al. (1994) confirmed fluid migration in rocks by X-

ray CT. Schwartz et al. (1994) modeled the fluid flow in porous rocks by combining theoretical 

simulations with 3D imaging of the material studied. Additionally, according to the considered 
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rock type, accurate permeability and conductivity estimations are possible using CT (Coker et 

al. 1996; Coles et al. 1998; Arns et al. 2001, 2004). 

Geological porous material can be imaged with two major sources of X-ray radiations, used in 

micro-CT application: synchrotrons emitting collimated, almost parallel monochromatic X-

rays, and so-called industrial CT where the X-ray tubes producing fan- or cone-beam 

polychromatic X-rays (Figure 4). Synchrotron radiation is superior to X-ray system in terms of 

achievable spatial resolution and signal-to-noise ratio (Baruchel et al. 2006). But the 

synchrotron facilities are limited and the operational cost is high. Whereas, the lab based micro-

CT have lower X-ray flux but more cost efficient. Thereafter, for studies where a lot of samples 

is needed the industrial micro-CT would be the system of choice (Oliver Brunke et al. 2008). 

The first demonstration of X-ray micro tomography to look at geological samples was in 1987 

(Flannery et al. 1987) and used synchrotron sources to image a Coconino sandstone with a pixel 

size of 10 microns (Figure 5). Since then, the micro-CT has been used to study single-phase 

(Dunsmuir et al. 1991) and two-phase flow (Hazeltt et al. 1995). It has also been used to extract 

pore statistical information such as pore surface, volume ratios, average coordination numbers 

and aspect ratios (Jerauld et al. 1990). When performing a study of a core samples, internal 

features such as bedding, fractures, pore morphology, grain size and density variation can be 

analyzed (Coles et al. 1998). Moreover, extensive research has included applications on the 

complex porosity and pore geometry of carbonate reservoirs and rock-fluid analysis (Purcell et 

al. 2009). Details on micro-CT scanning will be discussed on chapter 6. 

 

Figure 4 Cone beam configuration (Wildenschild & Sheppard 2013). 
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Figure 5 Tomographic reconstruction of Coconino sandstone from the original work on micro-CT 

imaging (Flannery 1987). 

 

5.2 Image segmentation methods 

There are numerous attempts to categorize image segmentation methods in the literature. Fu 

and Mu (1981) categorized segmentation techniques into three classes; characteristic feature 

thresholding or clustering, edge detection, and region extraction. Haralick and Shapiro (1985) 

classified image segmentation as: measurement space guided, spatial clustering, single linkage 

region growing scheme, hybrid linkage region growing scheme, centroid linkage region 

growing schemes, spatial clustering schemes, and split and merge schemes. Pal et al. (1993) 

alluded in his study that these previous reviews did not consider fuzzy set theoretic segmentation 

neural network segmentation and objective evaluation of image segmentation. Pal et al. (1993) 

classified image segmentation as; gray level thresholding, interactive pixel classification, 

surface-based segmentation, edge detection, and methods based on fuzzy sets theory. I will 

briefly discuss different techniques  

5.2.1 Gray level thresholding  

Gray level thresholding is a popular technique for image segmentation. Thresholding can be 

achieved based on the histogram of the entire image or by local information such as co-

occurrence matrix. By selecting a single threshold value T, separating the foreground pixels 
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from the background it is called global thresholding and if the image is divided into sub regions 

by selecting different threshold values for each region is called local thresholding or adaptive 

thresholding schemes. When the image histogram has different peaks, each corresponding to 

one region and the peaks are separated by a deep valley, in this case selecting a global threshold 

value become an easy task. However, normally the case is not like this and the threshold 

selection need additional study. There are different global thresholding techniques including 

minimum error thresholding, iterative thresholding, histogram concave analysis, Otsu (Otsu 

1979), optimal thresholding, and entropy-based thresholding. Well-known global thresholding 

method is Otsu (Otsu 1979) where he improved the class separately by maximizing the ratio 

between class variance and local variance to obtain the threshold. Entropy based thresholding 

is another technique where the chosen threshold maximizes a known posterior entropy of the 

image. Pun (1980) suggested a new threshold selection method by using the derivation of 

entropic threshold for images having irregular histograms. In the local thresholds methods the 

image subdivided into multiple regions by multiple threshold values. Several techniques were 

proposed such as Niblack’s technique (Niblack 1985) technique which were basically used for 

text recognition also Bernsen’s technique (Bernsen 1986) were he used the local contrast to 

binarize the image locally. Dynamic thresholding is another thresholding technique similar to 

local thresholding in dividing the image into regions by multiple thresholds, additionally, this 

method allows for the thresholding by various dynamic gray values for an object that resides in 

various grayscales. This method includes but not limited to watershed, image thresholding, and 

interpolation thresholding (Kang 2009). 

5.2.2 Interactive pixel classification 

Interactive pixel classification can be subdivided into relaxation, Markov random field (MRF) 

based approaches and neural network-based approaches. 

Relaxation is an iterative approach to segmentation where each pixel's classification decision 

can be made simultaneously. The decisions made at neighboring points in the current iteration 

are then integrated in the next iteration to make a decision. Relaxation can be classified into two 

types probabilistic and fuzzy.  

MRF based approaches is a multidimensional extension of Markov chains. This method uses 

the spatial interaction model to model a digital image. Where, the marginal density of any 
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random variable Xi depends only on the neighboring points in the image but not on all image 

points. MRF was generally proposed in image segmentation by Geman and Geman (1984) and 

been broadly used in edge detection (Zerubia et al. 1993) and image restoration (Blake 1989) 

long range motion and image classification (Kato 1996). Held (1997) is an example of 3D image 

segmentation using MRF where the parameters were computed from some manually labeled 

training samples and the image was segmented using a simulated annealing algorithm.  

Neural network-based approaches; Neural networks are vast networks of simple processors 

(artificial neurons or nodes) that are massively connected. These nodes are associated with a 

particular wight and threshold. Babaguchi et al. (1990) used multi layers network trained with 

back propagation for thresholding the image, where, semantic segmentation can be done using 

convolutional neural networks (CNN), as each pixel is assigned to a class or label (Wei et al. 

2016) . CNN can be trained using unsupervised or supervised machine learning algorithms for 

image segmentation. There are typically three types of layers in CNN: 1) convolutional layer 

where a small region of the input neuron is connected to a hidden layer, 2) pooling layer to 

reduce the dimensionality of the feature map. 3) Fully connected layer from the last few layers 

in the network. Sultana et al. (2020) categorized the CNN based segmentation models on the 

basis of the most important feature as; based on Fully Convolutional Network (FCN), based on 

dilatation/ Atrous convolution such as DeepLab, based on top down/ bottom up approach as 

Deconvnet, based on global context as ParseNet, based on receptive field enlargement and 

multi-scale context incorporation as Pyramid Scene Parsing Network (PSPNet).  

5.2.3 Edge detection  

The edge in an image may be described as the boundary that separates two different image 

regions. The operation of image detection is the procedure to detect and localize these 

boundaries of sharp discontinuities in the image (Kirti 2017). Edge detection-based 

segmentation is referring to the boundaries where an abrupt change in intensities or brightness 

values occur. Essentially, by detecting the edges of an object this will mark the boundary of the 

object and the object can be segmented from the image. There are three fundamental steps in 

edge detection: 

-filtering and enhancement; in order to suppress the noise presented in the image. 
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-detection of edge points by differentiating between noise and edges and deciding which one 

should be retained. 

-edge localization; determining the exact location of an edge. 

Moreover, there are two main techniques used for edge detection; the gray histogram, and the 

gradient-based approach (Kaur 2014). The gradient-based segmentation can be described as 

associating the boundaries of the object of interest with the intensity of the gradient crests 

observed in an image. Some of the popular methods used for edge detection are Sobel operator, 

canny operator, and Robert’s operator. 

5.2.4 Region based segmentation 

In this technique the image is partitioned based on pixel similarities. Connected pixels with 

similar properties are grouped, and the image is partitioned into regions. Region based 

segmentation can be categorized into two types: region growing and splitting and merging 

techniques (Khokher 2012). 

Region growing: In this method the image can be segmented into regions based on a growing 

seed point (initial pixels). These seeds can be selected either manually on the basis of a prior 

knowledge or it can be automated based on a certain application. The growing of the seeds are 

controlled by the connectivity of the pixels with similar properties and the growing of the pixels 

can be stopped based on a prior knowledge of the problem.  

Region splitting and merging: This method uses two techniques first iterative splitting of the 

image into regions based on similarities. Subsequently, merging occurs to combine adjacent 

regions that exhibit similarities. 

5.2.5 Clustering based segmentation 

Clustering technique is used to organize objects into a meaningful structure based on some 

similarities between objects. In such a structure, the similarities between objects in the same 

group are high while the similarities between objects in different groups are low. Hierarchical 

clustering is a method of cluster analysis where the algorithm builds a hierarchy of clusters 

either in agglomerative or divisive mode. In the cases of partitional clustering algorithms, the 

algorithms find all the clusters simultaneously, as a partition of the data, and do not impose a 
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hierarchical structure. The most popular and simplest partitional algorithm is 𝐾-means 

clustering (Jain. 2010). Clustering is divided into two types hard and soft clustering. 

In hard clustering the clustering of the image pixels is achieved in a way that one pixel can only 

belong to one cluster whereas, in soft clustering the division of pixels is not strict and the pixel 

can belong to more than one cluster. Fuzzy c-means is a popular method of soft clustering where 

the pixels are portioned into clusters based on a membership function. 

 

5.3 Pore reconstruction  

After the segmentation of the gray level images for separating the void space (pore space) from 

the solid phase (matrix), a three-dimensional binary image can be obtained representing the pore 

space and the porosity can be measured along with a morphological description of the pore 

space. Subsequently, the pore and throat type can be built for petrophysical analysis. Figure 6 

shows the workflow for generating the pore network model (PNM). 

 

Figure 6 Workflow to generate the pore network model (PNM). a) the original sample 3D volume; b) 

the sub- volume; c) the binary sub-volume; d) the full PNM, including nodes and links; e) nodes in the 

PNM; and f) links in the PNM. After Gong et al. (2020). 
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A successfully built network model should represent the real pore space in terms of geometrical 

and topological characteristics of the porous media. Based on the work of Xiong et al. (2016), 

there are three ways to achieve and build a representative PNM. The first model is achieved by 

building a statistically equivalent network using the distribution of basic morphologic 

parameters. This model generates a PNM only statistically equivalent to the modeled system. 

The second approach uses a direct mapping of the network structure onto a specific porous 

medium. This technique offers one-to-one spatial correspondence between the comparable 

network structure and the porous medium structure. The last model is called grain- based 

approach, based on the diagenesis of porous media (Xiong et al. 2016). 

Two of the direct mapping methods will be briefly illustrated; 

5.3.1 Medial axis method 

The medial axis algorithm transforms the pore space into a medial axis that is the reduced 

representation of the pore space (Figure 7) acting as a topological skeleton roughly running 

along the middle of the pore channels either by a thinning algorithm (Baldwin et al. 1996) or a 

pore space burning algorithm (Lindquist et al. 1996). The pore space partitioning can be 

validated along the skeleton to decide the pore throat by local minima along branches of pore 

bodies at the nodes (Lindquist et al. 1996). During the thinning procedure a clean-up process of 

the pore skeleton is done by removing the points with some additional geometrical constraints 

along the pore skeleton until no more points can be deleted (Lindquist et al. 1999). One 

advantage of this method is that it preserves basic topological and morphological properties of 

the entire pore space. However, due to the intrinsic sensitivity of the algorithm to noise in 

digitalized images a clean-up process needs to be performed thus, it is hard to identify pores 

unambiguously (Lindquist et al. 1999).  Moreover, they typically cover more than one medial 

axis junction to adequately trim the skeleton and fuse the junctions together while avoiding 

unreasonably high coordination numbers; various merging methods must be created (Sheppard 

et al. 2005). Where the coordination number refers to the number of neighboring pores or void 

spaces that are directly connected to a given pore or void.  
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Figure 7 The left picture shows the medial axis extracted from a small region of a Berea sandstone 

image (voxel side length is 4.93 µm); the right one is the set of medial axis after trimming all dead 

ends where no fluid flow through. The colors represent, in rainbow scale, distance to the closest (at 

least two) grain voxels (http://www.ams.sunysb.edu/~lindquis/3dma/3dma_rock/3dma_rock.html). 

5.3.2 Maximal ball (MP) 

The maximal ball method also denoted as MB starts from each voxel in the pore space to find 

the largest inscribed spheres that just touch the grain or the pore boundary Figure 8. Then those 

included in other spheres are viewed as inclusion and removed; the rest are called maximal balls 

and describe the pore space without redundancy. Locally the largest maximal balls identify the 

pores while the smallest balls between pores are the throats. The maximal balls were used 

mainly for calculating the dimensionless capillary pressure for the space rather than to extract a 

pore network from the image (Silin et al. 2003, 2006). A MB must touch the grain surface and 

so MBs cannot be a subset of any other MB. Therefore, every MB is in possession of at least 

one voxel that is not contained in any other MB. The aggregate of all MBs defines the void 

space in a rock image without redundancy. This method was later developed by Al-Kharusi and 

Blunt (2007) to investigate the pore space of sandstones and carbonates. Their method has 

similar starting point of finding maximal ball at each voxel, then they have developed a more 

extensive set of criteria for determining the optimal ball hierarchy. While in Silin et al ‘s (2007) 

work only two criteria of relations are defined masters and slave which corresponds to the bigger 

and smaller balls respectively compared to their neighbors. 

 

http://www.ams.sunysb.edu/~lindquis/3dma/3dma_rock/3dma_rock.html
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Figure 8 a) is the pore space image of a Fontainebeau sandstone with a porosity of 17%; b) is 

maximal balls in the pore space. The dimensionless sizes of the images are 200 × 200 × 200 counted 

in voxels; c) shows the master balls (pores) found in a); d) are the pores and their connectivity of the 

pore space. Modified after Dong et al. (2007). 

In Al-Kharusi and Blunt (2007) new relationship was introduced where they included the cluster 

to hold nearby maximal balls of the same size (Figure 9). Which resolved the problem of 

uncertainty caused by these identical balls after changing the pore space to maximal balls from 

the voxels. Their model was successful in predicting the absolute permeability; however, it 

requires a huge memory usage therefore it was limited for small data sets which contains fewer 

than a thousand pores. 



39 
 

 

Figure 9 Clusters are defined to fuse the identical spheres in the pore space. ( Al- Kharusi and Blunt 
2007). 
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6. Materials 

6.1 Geological background of the studied cores  

The Pannonian Basin was formed over three mega-structural facies units (terranes) the 

ALCAPA, the Tisza, and the Mid-Hungarian Mega-units Figure 10 (Haas et al. 2010).  

 

Figure 10 The main structural units of pre-Cenozoic basement of the Carpathic- Balkan – Dinaric 

region after Haas et al (2010). 

 

From tecto–palaeogeographical point of view the evolution of the Pannonian Basin took place 

in three stages; 

 1- Stretching of the Pannonian lithosphere during the first half of the middle Miocene.  

2- In the Badenian (middle miocene) pelagic basins were formed and opened in the trenches in 

the Karpathian, where fine grained siliciclastic sediments were deposited. During the sea-level 

rise in the middle Badenian, carbonate sediments took place in the shallow marine 
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environments, while sedimentation was characterized by fine-grained siliciclastic deposits in 

the deep marine environments (Budai and Maros, 2018). At the beginning of the Sarmatian 

(middle Miocene) volcanic activity renewed with riolitic tuff falls, followed by carbonate 

sedimentation in shallow marine shelf environments (Budai and Maros, 2018). 

3- By the beginning of late Miocene due to orogeny uplift and major eustatic sea-level drop, the 

Intra-Carpathian area became separated from the Paratethys. In the Pannonian the lacustrine 

sediments started with a widespread unconformity (Sztanó et al. 2013) 

 

6.1.2 Sarmatian limestone 

The Sarmatian limestone samples originated from a cored section of a well drilled in the Mid-

Hungarian Mega-unit on the northern part of Somogy-Drava basin, SW Hungary. 

Sarmatian belongs to the middle part of the Miocene series. Jámbor (1977) in agreement with 

Kókay (1989) divided the Sarmatian strata into three different parts: 1) Lower limestone, 

calcareous marl; 2) middle part alternations of alginitic clay and sand layers, 3) upper part: 

ooidic limestone. 

Rögl and Steininger (1984) illustrated two sea level rising and falling cycles during Sarmatian. 

Based on gastropods foraminifera and ostracods studies. Cornée et al. (2009) showed two 

sedimentary units in the Samaritan limestone. The lower one consists of underwater dunes, its 

age is Elphidium regium - Elphidium hauerinum zones, the age of the upper cycle is Spirolina 

austriaca zone. Additionally, an erosion surface separating the two units, which can be traced 

regionally within the Spirolina austriaca zone. This erosion surface is a result of a terrestrial 

event occurred in between the cycles when the upper part of the lower unit is eroded in the late 

Sarmatian during the Spirolina austriaca zone. The two units correspond to fourth-order cycle 

according to Cornée et al. (2009).  

Figure 11 depicts the location of our samples.  
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Figure 11 Sample location marked with a red star at the Drava basin after Balázs et al. (2012) 

 

Ooidic-bioclastic aggrading – prograding underwater dunes make up the lower unit which was 

deposited on a ramp. The lagoon and inner ramp are the sources of the dunes' material. Seldomly 

bryozoan patch reefs occur as well. The sediment of upper unit consists of ooliths. Wind and 

wave action governed the upper unit's sedimentation. For the lower unit the estimated water 

depth is several to 50 m whereas its only several meters for the upper unit.  

6.2 A detailed description of the studied cores  

The investigated samples originate from an oil well drilled in the Mid-Hungarian Mega-Unit on 

the Northern part of the Somogy Dráva basin, SW Hungary. The well penetrated 24.5 m 

Sarmatian (Middle Miocene) limestone (Figure. 12). The reason I have chosen this part of the 

Pannonian Basin is the object of the study because it had not been extensively studied using 

micro-CT scanning techniques before, making it a unique opportunity to explore new ground in 

reservoir characterization. 
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Furthermore, carbonate reservoirs, due to their inherent complexity, have long been an area of 

interest and challenge for the oil and gas industry. However, there has been a notable gap in 

comprehensive studies and detailed investigations of these reservoirs in this region. 

For the analysis, four samples were used from two different depth intervals. Two samples 

were from the upper interval of the shallow marine Sarmatian limestone (Mukhtar 2020) 

and two others from a lower interval of marine  Sarmatian limestone. The depths of the 

samples from the upper part are 1966 m (the sample ID is 1966) and 1967 m (sample ID 

is 1967), and from the lower part are 1979 m (sample ID 1979) and 1980 m (sample ID is 

1980). He porosity and N-permeability for sample 1966 were 21% porosity and 33 mD 

permeability, respectively, with 28% porosity, and 55 mD permeability, for sample 

1967. However, for the other two samples from the lower part the measured porosity and 

permeability were very low at 12.41% and 0.07 mD for sample 1979, and for sample 

1980 they were 11.83% and 0.0037 mD. For all samples, cylindrical plugs were taken 

from the main cores with a diameter of  2 mm for µ-CT acquisition. The samples were 

scanned by the YXLON FF35 CT industrial micro-computed tomography in the 3DLab 

at the university of Miskolc, the scanning parameters were: scan type cone beam stop 

and go, 140 (KV) accelerating voltage, focus object distance 8 mm, focus detector 

distance 700 mm, and voxel size 2 µm. The number of images resulted from 1000 

scans for each sample. For image segmentation and segmentation evaluation, one 

tomogram was used. To avoid artifacts occurring on the edges of the scanned sample – 

such as beam hardening – a sub volume in the middle part of the image was extracted 

for segmentation. The resolution of the extracted sub-volume lattice for the four samples 

was 680 × 660 × 1000 with a pixel size of 2 µm Figure 12. 
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Figure 12 a) well location, b) sample description, c) Gamma-ray log (TG) & lithological column. The 

black arrows indicate the position of the cores, porosity permeability logs for the cored interval and 

sample dimensions used for micro-XCT scan to the right (edited by H.A.). 

 

6.3 The results of thin section analyses in the productive and dry reservoir 

sections  

The aim of the microfacies analyses was to detect any differences in the depositional and 

diagenetic environments between the productive and dry rocks.  

For microfacies analyses blue-dyed epoxy was used. After polishing the rock sample, it was 

dipped in blue epoxy resin which fills the pores. Under the microscope the pores appear as blue 

patches, enabling the pores to be easily distinguished from the components and matrix of the 

rock.  

Because large parts of the calcareous sediments consist of the chemically instable aragonite, 

diagenesis plays a much bigger role in the case of carbonate reservoirs than in siliciclastic ones.  

When calcareous mud is deposited it is plastic. During diagenesis it is compacted and fluids 

with different composition infiltrate the calcareous mud.  

The chemical composition and the CO2 content of the circulating interstitial water determines 

whether or not dissolution or precipitation of calcareous cement will dominate during 
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diagenesis. If the circulating interstitial water is undersaturated in CaCO3 dissolution will take 

place and secondary pores will be created. Porosity will be increased. If the circulating water is 

saturated in CaCO3 the pores will be filled with cement, reducing or even eliminating porosity. 

Based on the composition of the waters in the pores we differentiate meteoric marine and deep 

burial diagenetic environments. The cement crystals precipitating in different diagenetic 

environments are specific to the diagenetic environment in which they originate. 

In the marine diagenetic environment, the pores are filled by sea water.  

Meteoric diagenesis occurs at or near seawater. The meteoric environment is divided into 

vadose (above the water table) and phreatic (under the water table) zones. In the vadose meteoric 

environment the pores are filled with air and fresh water and in the phreatic meteoric with a 

mixture of fresh and sea water (Scholle and Ulmer-Scholle 2003).  

 

Samples 1966, 1967 (productive interval)  

The porosity of the rocks is 28% and 25% respectively. Both the matrix and most components 

(fossils, grains) are dissolved. The rock consists more or less of a frame of micritic envelopes 

(Figure 13e).  

Sediment deposition happened in a marine environment. After deposition rims of grains and 

fossils were micritized due to organic activity. Later the diagenesis continued in a meteoric 

phreatic environment. Here the interstitial water is a mixture of fresh and marine water, which 

is under saturated in CaCO3. Dissolution dominated. All aragonitic components, fossils, the 

grains, and even the matrix were dissolved. Only the micritic envelope resisted outlining 

deposition of the dissolved aragonitic components. The envelopes have a thin coating of 

phreatic calcite cement, referring to meteoric phreatic diagenetic environments also.  

 

Samples 1979, 1980 (dry interval)  

In the micritic matrix fossils such as foraminifera (Figure 14a) algae and other fossil fragments 

can be found.  

The rock consists of glaebules (incipient nodules) with spar-filled circumgranular shrinkage 

cracks, Figure 14d). Microcodium also appears in large quantities. Microcodium is 

characterised by tubular fabrics around the roots of terrestrial plants (Scholle and Ulmer-Scholle 

2003).  
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Because of the presence of foraminifera and algae I can conclude that the sediment was 

deposited in a marine environment. Diagenesis started in subaerial exposure which is evidenced 

by the presence of Microcodiums and dessication cracks. The diagenesis was finished in a 

marine environment where all pores were filled by mosaic calcite.  

Comparison of the productive and dry rocks clearly demonstrates that the diagenetic 

environment has a profound influence on porosity increase and decrease. In our case the 

sediments of both the productive and the dry intervals were deposited in marine environments, 

but the diagenesis of the productive rocks happened in the meteoric phreatic, whereas the 

diagenesis of the dry rocks started in a meteoric vadose environment and finished in a marine 

environment.  

We can conclude that during diagenesis of the productive rocks the relative sea level decreased 

considerably, while in the dry rocks an initial decrease of the relative sea level caused subaerial 

exposure, which was followed by a relative sea level increase, covering the area with sea water.  
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Figure 13 a) Moldic porosity. The shell of a gastropod was totally dissolved creating moldic porosity 

(arrow 1). In the meteoric phreatic zone bladed cement crystals precipitated on the internal wall of the 

moldic pore (arrow 2). Well.4-7.3 1966 m, horizontal thin section. b) Intra- and interparticle pores. 

The primary pores within the fossils remained empty (primary pores: arrow 1), and during meteoritic 

diagenesis the majority of the matrix was dissolved creating secondary intergranular pores (arrow 2). 

Note, that shells of the ostracods were not separated after the death of the animal and were later filled 

by calcite (arrow 3). Well.4-7.2 1967 m vertical thin section. c) Dog tooth cement. On the edge of the 

pore bladed calcite cements precipitated in freshwater phreatic zone. Well.4-7.3 1966 m. Horizontal 

thin section. d) Intra-and interparticle porosity.  The internal part of the foraminifera chambers 

remains empty, forming primary porosity (arrow 1).  During diagenesis much of the matrix was 
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dissolved by secondary intergranular pores being created.  Well.4-7.2 1967 m horizontal thin section. 

e) During diagenesis the original chambers of the foraminifera were partly filled by calcite cement 

(arrow 1). On the outer part of the shell bladed calcite cements were precipitated in the fresh water 

phreatic zone (arrow 2). The bio and intraclasts were partly dissolved and on their outer parts bladed 

cement precipitated.  Well.4-7.2 1967 m, vertical thin section (edited by H.A.). 

 

Figure 14 Horizontal thin sections from the lower interval samples a) The shell of a 

foraminifera was partly dissolved creating moldic porosity during a relative see level drop 

followed by infiltration of freshwater. Later, in a deeper water environment, rapid cementation 

occurred, and the moldic porosity was entirely filled with mosaic calcite. (arrow 1). b) 

Channels were completely filled by mosaic calcite (arrow 2). The rock matrix was totally 

dissolved and replaced by carbonate mud precipitation (arrow 3). c) The matrix was replaced 

by mosaic calcite (arrow 4). d) Channels and pores were filled by mosaic calcite and the 

matrix was replaced by carbonate mud (edited by H.A.). 
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7. Methods 

7.1 XCT imaging 

X-ray computed tomography (CT) is a non-destructive tool that is used widely in geoscience. It 

can be used for making three-dimensional reconstruction of the variation of attenuation through 

the object of study. The data obtained from this technique is digitalized making it suitable for 

quantitative analysis. The foundation of X-ray CT lies in X-ray radiography, of which the main 

components are an X-ray source, an object that is irradiated and a detector that measures the 

attenuated X-rays. As result a radiograph is produced. Unlike a few two-dimensional 

radiographs which causes a loss of depth information X-ray computed tomography, or CT, 

provides a complete 3D reconstruction of the original structure of the sample which enables the 

rock grains and pores to be distinguished. 

The principle of 3D reconstruction appeared in the 1970’s when a computerized transverse axial 

tomography was developed. This method acquires multiply sets of radiographs of an object over 

a range of angular orientations and a 3D volume is reconstructed using computer algorithms 

(Cnudde & Boone 2013, Ketcham & Carlson 2001). Here at the University of Miskolc, at the 

Centre for X-ray Tomography, a new generation of (Computer Tomograph YXLON FF35) is 

used in which a resolution up to 06μm (3D) and 0.15μm (2D) can be detected with dual X-Ray 

tube. However, in practice I use the 2µm focal spot size to maintain sufficient photon flux 

radiating through the samples and detected by the detectors panel. The 16-bit digital X-ray 

Cesium Iodide detectors of this system is a flat panel detector with a pixel size of 150 µm. 

VGSTUDIO MAX software which is a high-end software for the analysis and visualization of 

industrial computed tomography (CT) data. 

7.1.1 Introduction of the measuring equipment 

X-ray CT comprises three fundamental components: the X-ray source, the object subjected to 

X-ray irradiation, and the detector responsible for capturing attenuated X-rays as 2D projection 

images. In μ-CT, a series of steps is involved:  

Data acquisition: This stage entails correctly positioning the sample in the holder, ensuring that 

the rotation axis of the sample aligns with that of the holder to maximize magnification. 
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Scanning parameters, such as energy, radiation intensity, and exposure time, are adjusted to 

control image contrast. It is crucial to avoid oversaturating the image with excessive white.  

X-ray irradiation and data collection: During the measurement process, the sample is exposed 

to X-rays, and the differences in X-ray absorption properties of materials, depending on their 

mineral composition, are measured. The measurement data is collected and stored in computer 

memory. 

Reconstruction: The object is irradiated with X-rays and rotated incrementally on a rotational 

stage, capturing a series of X-ray projection images. These images are acquired over a 180º 

rotation (or sometimes a 360º rotation, depending on the sample type) to create a comprehensive 

3D representation of the object. Subsequently, the attenuated X-rays are measured by the 

detectors as 2D projection images. 

 In figure 15a a schematic diagram of micro-CT. In Figure 15b is an illustration of the setups of 

the desktop micro-CT scanner at the University of Miskolc. The CT scanner uses an industrial 

tube to irradiate the sample of a bundle of X-rays as a cone beam.  
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Figure 15 a) A schematic illustration of micro-CT after Chen et al (2016). b) The setup of the XCT 

scanner at the University of Miskolc. Arrow one indicates the sample mounted on the rotary table, and 

arrow two is the X-ray source (edited by H.A.).  

7.1.2. Sample preparation 

Since I aimed high resolution images to study the micro pore sizes, there two factors must be 

considered to achieve the desired results; the influence of the sample size on the resolution, and 

the detector coverage during the sample rotation. Therefore, the scanned specimen must be 

small and well-shaped. I used a cylinder column drilling machine to drill out small cylindrical 

samples from a larger core (Figure 16). To maintain the integrity of the samples from the 

destructive physical drilling, a relatively large plugs were drilled out, then after, the diameter of 

the plugs was reduced manually by the use of the sand papers.  The typical cylinder diameter of 

the scans was around 2-4 mm. 
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Figure 16 Taking small plug from the sample by using cylinder column drilling machine (edited by 
H.A.). 

 

7.1.3 Calibration 

A calibration of the machine is necessary before starting the scan. This can be achieved by 

capturing the correction images to remove the inhomogeneity in the background images for 

instance taking images with only air in between the source and the detectors. This can be done 

by the detectors reading one with the X-ray on and another one with the X-ray off and it’s called 

the flat field. This flat field is important to take into account the non-uniformities in the X-ray 

beam and the ununiform response detector. 

7.1.4. Scanning parameters  

It is important to setup the measurement parameters of the CT scan before starting the scan 

which could influence the measurement outcome and thus the uncertainty of measurements. 

These parameters are the imaging parameters such as (tube voltage, tube current, prefilter, 

number of projections, etc.). These parameters are mostly defined by the user, based on 

experience and having some knowledge about the sample to measure and the kind of 
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information needs to be taken out of the scan. Below is an overview of the factors should be 

considered while sitting up for the measurement. 

7.1.4.1 Selection of the resolution 

An important factor before starting the scan is the selection of the resolution that can be obtained 

from a sample with known dimensions. Since the sample geometry could affect the 

measurement and increase the artifact therefore it is suggested to use only the central part of the 

detectors due to two reasons: first, the intensity of the beam cone intended to reduce near the 

edges, and the second, far from the central slice the reconstruction of the cone beam geometry 

is not ideal. 

7.1.4.2 Voxel size 

Voxel size can be defined by the user, the voxel size is defined as the 3D physical dimension of 

the pixel in the image and it depends on the magnification which is the distance in-between the 

object and the source. The smaller the voxel size the higher the resolution (Figure 17) but 

smaller voxel sizes are coupled with longer scan times and large data sets. When considering 

all of these outcomes, a minimum voxel to object size ratio of 2:1 is a good guideline to follow 

(Bouxsein et al. 2010). 

 

Figure 17 Three scans taken for the same sample at different resolutions where: a) has a voxel size of 

99.7 µm b) has a voxel size of 41.7 µm and c) has a voxel size of 10.4 µm (edited by H.A.). 
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7.1.4.3 Number of projections: 

The number of the projection image taken during the rotation of the sample until the sample 

completes its 360 degrees which results in a series of projection images is called number of 

projections. Low number of projection cause artifacts and acquiring too many projections not 

only increase the acquisition time but also the reconstruction time of the data. Therefore, before 

deciding on the number of the projection many factors should be considered such as the sample 

shape (ex: cylindrical samples take less projection number than a cubic sample (because of the 

reconstruction of the cubic surfaces), the kind of data needs to be investigated. For instance, if 

the goal from the scan is to acquire information about the pores the number of projections needs 

to be high in order to show the desired results and unnecessarily long acquisition time. 

7.1.5 Reconstruction 

The final three-dimensional images acquired by the CT-scan is proceed from stacking sequence 

of two-dimensional slice images. These two-dimensional images resulted from a large number 

of projection images attained by the scanning system.  

Then the inversion process take place to produce the special images from projections, 

employing the filter-back projection algorithm.  

This algorithm is adapted to cone geometry and consists of two steps, filtering the projection 

and back projecting the information on the three-dimensional image volume that represents the 

scanned sample. The reconstruction software used at University of Miskolc is VG Studio Max 

3.1. At the end of the reconstruction stage a stack of two-dimensional slices is produced. 

7.1.6 Spatial resolution 

The spatial resolution in radiography is defined as the ability of an imaging modality to 

differentiate two adjacent objects as being distinct from each other. In our case these two objects 

are the void phase (the pore space), and the solid phase (or the matrix). Pixel size, focal spot 

size, magnification, slice thickness and detectors size all plays an important role of affecting the 

spatial resolution. However, since our studied samples are carbonates, a decent spatial 

resolution down to 2 µm is required where the micro porosity has a great impact on the fluid 

transport. Examples on different image resolutions are shown in Figures 18 to 20.  
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The resolution of a CT-system is defined by the resolution of the X-ray source and the 

detection system. The resolution can be calculated through the following equation (Mouze 

1996): 

𝑅 =
𝑑

𝑀
+ (1 − 

1

𝑀
)𝑠      (1), 

where: 

𝑀 = 
𝑑𝑐+𝑑𝑑

𝑋
      (2), 

with R the achievable resolution in the object, where s is the spot size of the X-ray source, d the 

resolution of the detector and M the magnification (see Equation 2), which is related to the 

position of the object, where dc being the source-object distance and dd the object-detector 

distance and x is the lenses radius. 

 

Figure 18 An example of a carbonate rock image with a resolution of 21 microns (edited by H.A.). 
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Figure 19 An example of unconsolidated sandstone image with a voxel size of 8 microns. After Dong 
et al. (2007). 

 

Figure 20 Sample 1967, an example of carbonate rock image with a resolution of 2 microns (edited by 
H.A.). 
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7.1.7 X-ray attenuation  

X-Ray attenuation is the reduction of intensity of the X-ray beam when it passes through the 

subject. Energy scattering and absorption are the main reasons for the attenuation of the X- ray 

beam and it can be affected by many factors like atomic number, density of the absorber, and 

beam energy. The denser the object or the higher the atomic number is, the more the X-rays are 

attenuated. The attenuation measured in each volume of CT image is the linear coefficient, 

thereafter, the monoenergetic beam attenuation in a homogeneous material can be calculated 

through Beer’s law (Kak and Slaney 2001) as follows: 

𝐼 = 𝐼0𝑒
−𝜇𝑥      (3),

  

where I0 is the initial X-ray intensity, I/I0 is the attenuation of X-ray intensity per unit length of 

a given material; µ is the linear attenuation coefficient for the material being scanned and x is 

the length of the X-ray path through the material. For a composite material the equation (3) 

becomes: 

𝐼 =  𝐼0𝑒
−∑ 𝜇𝑖𝑥𝑖𝑖      (4). 

Most reconstruction strategies solve for equation (4) insofar, as they assign a simple value to 

each voxel rather than some energy dependent range (Ketcham & Carlson 2001). The 

attenuation coefficients in a CT image are expressed in Hounsfield Unit (HU), which quantifies 

the amount of attenuation of any specified tissue relative to the attenuation of water. In general, 

changes in X-ray photon energy will also result in a change in the tissue HU value. Finally, the 

attenuated X-ray intensities are transferred to a computer for 3D image reconstruction using the 

2D projections.  

7.1.8 X-ray source 

X-rays are a type of electromagnetic radiation with a very high frequency and energy. In the X- 

ray tube a cathode filament is heated, which ejects electrons by a process called thermionic 

emission. By applying an electric field, the fast-moving electrons are targeted on an anode. The 

kinetic energy created from the collision of the electrons with that anode creates for 99 % 
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thermal energy and less than 1 % is responsible for X- ray production. X-rays are created by 

two different processes, the first are created by the retardation of electrons, when they interact 

with the anode and are called Bremsstrahlung or deceleration radiation, which is polychromatic. 

The second type of radiation comes from the creation of characteristic X-rays (Cnudde 2005).  

The important variables that determine how effective an X-ray source will be for a particular 

task is the size of the focal spot, the spectrum of X-ray energies generated, and the X-ray 

intensity (Ketcham & Carlson 2001). The focal-spot size partially defines the potential spatial 

resolution of a CT system by determining the number of possible source–detector paths that can 

intersect a given point in the object being scanned. The more source–detector paths are, the 

more blurring of features will be (Ketcham & Carlson 2001). The energy spectrum defines the 

penetrative ability of the X-rays, as well as their expected relative attenuation as they pass 

through materials of different density. Higher-energy X-rays penetrate more effectively than 

lower-energy ones, but are less sensitive to changes in material density and composition 

(Ketcham & Carlson 2001). The X-ray intensity directly affects the signal-to-noise ratio and 

thus image clarity. Higher intensities improve the underlying counting statistics, but often 

require a larger focal spot. The energy spectrum generated is usually described in terms of the 

peak X-ray energy (keV or MeV), but actually consists of a continuum, in which the level with 

maximum intensity is typically less than half of the peak (Wellington 1987). Figure 21 shows 

the theoretical energy spectra after Wellington (1987). 
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Figure 21 Theoretical energy spectra for 420-KV X-ray source with tungsten, calculated combining 5-

Kev interval spectra consist of continuous Bremsstrahlung and characteristic K-series peaks at 57-59 

and 67-69 Kev. Upper spectrum is modified only by inherent beam filtration by 3 mm of aluminum at 

tube exit port. Mean X-ray energy is 114 Kev. Lower curve represents a spectrum that has also passed 

through 5 cm quartz. Preferentinal attenuation of low energy X-rays causes’ average energy to rise to 

178 Kev. After Wellington et al. (1987). 

 

7.1.9 Detectors 

Detectors are made of scintillators to gather the attenuated X-rays. A scintillator converts the 

incoming X-ray into flashes of light which on their turn are being counted. Detectors influence 

image quality through their size and quantity, and through their efficiency in detecting the 

energy spectrum generated by the source. The size of a single detector determines how much 

energy will be averaged for an amount of object into a single intensity range. While, the number 

of detectors will determine how much information will be captured at the same time. Moreover, 
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the level of X-ray energy influences which kind of detector must be used. YXLON FF35 uses 

a 43 x 43 cm² CsI scintillator flat panel detector Optimized for microfocus CT applications. 

7.2 Generation of Pore Network Model (PNM)  

Our rock sample were provided from the Hungarian oil company Mol Group. The samples were 

scanned by the YXLON FF35 CT industrial micro-CT at the University of Miskolc. As 

mentioned earlier, the cores were taken from an oil and gas well drilled in south west part of 

Hungary. The choice of the cores was made based on reading the well logs and learning the 

production profiles to identify the productive and dry intervals of the wells. Tiny plugs were 

drilled out from larger cores. The goal is to conduct a comprehensive study in pore space images 

and the derived pore network to establish a process for analyzing pore space using CT 

tomograms, define the appropriate sample size, the scanning parameter, and the most effective 

segmentation technique to create acceptable thresholding values. The second goal is to identify, 

on a micro scale, the distinctions between the four examined core intervals. 

7.2.1 Segmentation/Binarization 

An X-ray computed tomography (XCT) images, also known as tomograms, consist of a cubic 

array of reconstructed linear X-ray attenuation coefficient values (also known as pixel values). 

Accurate image segmentation is the first step toward pore-network modeling and analysis 

(Gonzalez 2008). Image segmentation is the process of classifying similar values of image gray 

intensity into distinct groups or classes using machine learning (unsupervised or supervised) 

segmentation algorithm. The literature reports a variety of techniques for image segmentation 

(Haralick 1992, Pal 1993, Sezgin 2004), yet none of which is universal and suitable for all types 

of images. 

 Porous materials such as carbonates contain areas of void, called the pore space, as well as a 

number of distinct mineral components, each with a comparatively uniform density 

consequently similar gray value. Acquiring a clear distribution separating the pore phase from 

the mineral phase has some difficulties. These difficulties arise from low density pore inclusions 

(e.g., microporosity, clays) below the image resolution making the distinctions between phases 

unclear. 
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There have been intensive studies to improve segmentation methods for better quantitative 

characterization of pore space feature. Iassonov et al. (2009) broadly classified segmentation 

algorithms into globally and locally adaptive segmentation. The fundamental concept behind 

global thresholding scheme is that a single gray value is selected as threshold value separating 

one phase from the other. There are many subcategories under the scheme, the most commonly 

used is the histogram shape (triangulation) (Zack et al. 1977). Whereas, in adaptive thresholding 

each individual pixel is assigned to a particular class based on the information contained on the 

neighboring pixels. Utilization of local information helps in reducing the effects of some image 

artifact such as beam hardening. One repeatedly used method is the probabilistic fuzzy c-means 

(Zack et al. 1977) it belongs to the unsupervised segmentation category but it requires high 

computational power. In other work Cortina-Januchs et al. (2011) a combination of different 

algorithms used where they applied clustering and artificial neural network (ANN) to segment 

binary soil images. Whereas, (Khan et al. 2016) used the supervised technique least square 

support vector machine (LS- SVM) for segmentation of rock images.  The Machine learning 

and neural networks were developed to mimic human sight and were initially used for speech 

and image recognition (Fukushima 1980, Lecun 2015). They were rapidly used for the 

resolution enhancement, for example, satellite images (Chang 2019) and medical images (Pham 

2019) and industrial computed tomography XCT (You 2019). Unsupervised learning is a 

machine learning technique, where there is no need to supervise the model. Instead, the model 

is allowed to work on its own to discover information. It mainly deals with the unlabeled data 

and no prior knowledge about the data set is required. 

Supervised learning allows to collect data or produce a data output from the previous 

experience. It helps to optimize performance criteria using experience. A supervised learning 

model uses training data to learn a link between the input and the outputs. This link is used to 

sort out information similar to the training data from an unknown data set. Several algorithms 

can be used in the supervised approaches (e.g. Support vector machine, Neural network, Linear 

and Logistics Regression, Random forest, Classification trees, and Naive Bayes). The 

classification and interpretation tasks determine which of the many available segmentation 

routines should be used (Chauhan 2016).  
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In this chapter the details of the segmentation algorithm will be presented. First, I introduce the 

basic concepts of the unsupervised methods used in this algorithm. They are the basic building 

blocks for training the unsupervised ML algorithms. Then, the Naïve Bayes classifier is 

proposed for training in which the feature vectors resulted from each unsupervised learning 

classifier will be used individually for training the Naive Bayes. For evaluating the accuracy of 

the segmentation results resulted from each training method, the 10 k-fold cross validation 

technique was used schematic illustration of the segmentation workflow presented in Figure 22. 

Finally, I compare the results by visual inspection and by feature extraction in terms of pore 

volume, and pore diameter. 

 

Figure 22 Schematic illustration of the segmentation workflow applied (edited by H.A.). 
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7.2.1.1 Unsupervised pixel classification 

7.2.1.1.1 k-means clustering 

Cluster analysis is the concept used to recognize observed data into a meaningful structure by 

discovering the natural grouping(s) of a set of patterns, points or objects, to gain further insight 

from them. In such a structure, the similarities between objects in the same group are high while 

the similarities between objects in different groups are low. Hierarchical clustering is a method 

of cluster analysis where the algorithm builds a hierarchy of clusters either in agglomerative or 

divisive mode. In the cases of partitional clustering algorithms, the algorithms find all the 

clusters simultaneously, as a partition of the data, and do not impose a hierarchical structure. 

The most popular and simplest partitional algorithm is 𝐾-means clustering (Jain 2010). It is a 

simple unsupervised learning procedure. The calculation consists of two separate phases. The 

first phase is for the initializing 𝐾 centroids. In the second phase, each data point is assigned to 

its closest centroid. The initial centroids are iteratively updated to the mean of the constituent 

data points. The algorithm finally converges when no further change occurs in the assignment 

of data points to the centroids. In this state, the points in any cluster have a minimum distance 

to the corresponding centroid. Several methods can be used to define the distance of the nearest 

centroid. Among them, Euclidean distance is one of the most used approaches. 

7.2.1.1.2 Fuzzy c-means clustering (FCM) 

FCM is superior to hard clustering as it has more tolerance to ambiguity and retains more 

original image information (Lei 2018). The concept of characterizing an individual points 

similarity to all the clusters was introduced by Zadeh (1965). Zadeh’s idea is to depict the 

similarity a point shares with each cluster by a membership function. Additionally, the sum of 

the memberships for each sample point must be unity. Each sample will have a membership in 

every cluster. Memberships close to zero imply a little similarity between the sample and that 

cluster.  The net effect of such a function for clustering is to produce fuzzy c-partitions of a 

given data set Zadeh (1965). FCM value uses an iterative optimization of an objective function 

based on a membership function (Toz 2019). A local extremum of this objective function 

indicates an optimal clustering of the input data (Andrzeij 2007).  

FCM has been used in image segmentation (Lei 2018) and it proved efficacy for images with 

simple texture and background (Lei 2018). Nonetheless, it fails to segment images with complex 
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texture and background or images corrupted by noise because it only considers gray-level 

information without considering the spatial information (Lei 2018).  To resolve the problem, 

one popular idea is to incorporate the local spatial information in an objective function to 

improve the segmentation effect (Lei 2018). Tao Lei et al. (2018) have an improved FCM 

algorithm based on morphological reconstruction, and membership filtering (FRFCM). By 

introducing a morphological reconstruction operation, the algorithm manifests tolerance to the 

noise presented in the image. Consequently, image details are preserved. In the next step the 

membership partition is replaced by membership filtering that depends only on the spatial 

neighbors of the membership partition (Lei 2018). The FRFCM algorithm can be summarized 

as follows: 

Step 1: Set the cluster prototype value, fuzzification parameter, the size of the filtering 

window, and the minimal error threshold. 

Step 2: Compute the new image and then compute the histogram of that image. 

Step 3: Initialize randomly the membership partition matrix. 

Step 4: Update the clustering centers. 

Step 5: Update the membership partition matrix. 

7.2.1.1.3 Thresholding by minimum cross entropy: 

Entropy is a thermodynamic quantity used in physics; it was introduced by German physicist 

Rudolf Clausius in the second half of the 18th century. It measures the disorder of a system and 

the spontaneous dispersal of energy as a function of temperature. In physics, the notion of 

entropy is typically regarded as a measure of the degree of randomness, and the tendency of 

physical systems to become less and less organized. In 1870, Gibbs gave a general entropy 

expression for a thermodynamic system as: 

𝑆 = ∑ 𝑃𝑗𝑙𝑜𝑔𝑃𝑗𝑗       (5), 

where 𝑃𝑗 is the probability that the system is at state 𝑗. In 1877, Boltzmann quantifies entropy 

of an equilibrium thermodynamic system as: 

𝑆 = 𝐾 ∙ 𝑙𝑜𝑔𝑊,      (6), 

where 𝑆 is entropy; 𝐾 is Boltzman constant and 𝑊 is the number of states in the system.  

In 1949, Shannon redefined the entropy concept of Boltzmann/Gibbs as a measure of 

uncertainty regarding the information content of a system (Sengur 2006). In information theory, 
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entropy measures the amount of uncertainty of an unknown or random quantity (Mahmoudi 

2012). Many entropy-based thresholding methods exist in the literature. These methods can be 

categorized into three groups: entropic thresholding, cross-entropic thresholding, and fuzzy 

entropic thresholding (Mahmoudi 2012). Cross-entropic thresholding formulates the 

thresholding as the minimization of an information-theoretic distance (Sezgin 2004). Entropy 

could also be used as a measure of separation that separates the information into two regions, above 

and below an intensity threshold (Al-Attas 2006). Entropic thresholding considers the image 

foreground and background as two different signal sources so that when the sum of the two-

class entropies reaches its maximum, the image is said to be optimally thresholded (Sezgin 

2004). When the minimum cross-entropy criterion is applied to threshold segmentation, it refers 

to searching the threshold which can minimize the information content before and after 

segmentation.  

The simplest and most direct scheme for threshold selection would be to iterate through all 

possible threshold values and to select that threshold, which corresponds to the minimum of the 

cross entropic. 

7.2.1.1.4 Type-2 fuzzy entropy thresholding: 

A classical set A can be defined as a collection of elements that can be either belong to or not 

belong to set A. In contrast, a fuzzy set is a collection of objects without clear boundaries or 

well-defined characteristics. There are two types of fuzzy sets. A type-1 fuzzy set A, in a finite 

set, X = {x1, x2, …, xn} may be represented as in equation (7): 

A = {x, µA(x) | x ϵ X, 0 ≤ µA(x) ≤ 1}      (7), 

where 0 ≤ 𝜇𝐴(𝑥) ≤ 1and 𝜇𝐴(x) is called the membership function, which measures the 

closeness of 𝑥 to A and it can only take a single value.  

In a Type-2 fuzzy set, a range of membership values is used instead of a single value. If A is a 

type-2 fuzzy set, then: 

𝐴 = {𝑥, 𝜇𝐴
𝐻𝑖𝑔ℎ(𝑥), 𝜇𝐴

𝐿𝑜𝑤(𝑥)|x ∈ X, 0 ≤ 𝜇𝐴
𝐻𝑖𝑔ℎ(x), 𝜇𝐴

𝐿𝑜𝑤(x) ≤ 1}   (8). 

In the above definition, 𝜇𝐴
𝐻𝑖𝑔ℎ

 , and 𝜇𝐴
𝐿𝑜𝑤 are upper and lower membership functions, 

respectively. 
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A digital image, IGr contains M × N pixels, where each pixel has a position defined by (m; n). 

The images have L intensity values that are stored in the pixels. In this context, the distribution 

of the intensity levels on the image can be represented by a histogram that can also be 

normalized as: 

ℎ𝑖 =
𝑛𝑝𝑖

(𝑁𝑃)
,  ∑ ℎ𝑖 = 1

𝑁𝑃
𝑖=1       (9), 

where 𝑖 is a level of intensity (0 ≤  𝑖 ≤  𝐿 –  1) and 𝑁𝑃 =  𝑀 ∙ 𝑁 is the total number of pixels 

contained in the image. The term ultra-fuzziness can be used as a metric associated with a fuzzy 

set. It gives a 0 value when the membership values can be represented without an uncertainty. 

However, the value rises to 1 when membership values can be specified within an interval. For 

a digital image, the ultra-fuzziness for the i th level of intensity is defined as: 

𝑃𝑘 = ∑ (ℎ𝑖 ∗ (𝜇𝑘
ℎ𝑖𝑔ℎ(𝑖) − 𝜇𝑘

𝑙𝑜𝑤(𝑖)))𝐿−1
𝑖=0 , 𝐾 = {1,2,… , 𝑛𝑙}  

 (10). 

Fuzzy entropy measure is a concept used to assess the amount of vagueness within a fuzzy set. 

The type II fuzzy entropy for a 𝑘𝑡ℎ −threshold is therefore given as: 

𝐹𝑒𝑘 = −∑ (
(ℎ𝑖∗(𝜇𝑘

ℎ𝑖𝑔ℎ
(𝑖)−𝜇𝑘

𝑙𝑜𝑤(𝑖))

𝑃𝑘
) ∗ 𝑖𝑛 𝐿−1

𝑖=1 (
(ℎ𝑖∗(𝜇𝑘

ℎ𝑖𝑔ℎ
(𝑖)−𝜇𝑘

𝑙𝑜𝑤(𝑖))

𝑃𝑘
), 𝐾 = {1,2,… , 𝑛𝑙} 

 (11). 

The sum of all the entropies for the (𝑛𝑙 + 1) levels is the total entropy defined as: 

𝑇𝐹𝑒(𝑎1, 𝑐1, … , 𝑎𝑛, 𝑐𝑛) =  ∑ 𝐹𝑒𝑖
𝑛𝑡+1
𝑘=1     (12) 

 
7.2.1.2 Supervised clustering: Naive Bayes classifier  

In supervised learning classifier only labeled data (training patterns with known category labels) 

are involved. A supervised classifier is trained using a set of predefined features or classes 

(known as training data), where similar pixels values are sorted out from unknow data set 

(testing data) using supervised learning techniques. The performance of this classifier on the 

testing subsets(s) indicates the stability of the clustering algorithm. 

Treating image properties as random variables, and deriving a probabilistic model based on 

Bayesian image segmentation. The motivation for the application of a stochastic framework is 
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based on the assumption that the variation and interactions between image attributes can be 

described by probability distributions (Dong-Chul 2016). Naïve Bayes classifier is based on 

Bayes’ theorem (Jang 2016). The Bayes’ theorem says, that the probability that an event 𝑥 

belongs to a class 𝑘 can be calculated by using the following equation: 

 

P(𝑐𝑘 |x)=
P(x|𝑐𝑘)P(𝑐𝑘)

P(x)
      (13) 

In the equation (13); P(𝑐𝑘|x) is a posterior probability, P(x|𝑐𝑘) is the probability of 𝑥 occurring 

given evidence 𝑐𝑘 has already occurred, P (𝑐𝑘) is the Probability of 𝑐𝑘 occurring, P(x) is the 

probability of 𝑥 occurring. Based on the Bayesian decision we can decide the optimum class 𝑘 

for the event 𝑥 by choosing the class with the highest probability among all possible classes. 

This choice can minimize the classification error (Dong-Chul 2016). For doing so, we need to 

estimate P(x|𝑐𝑘) providing that any particular value of vector x conditional on ck is statistically 

independent of each dimension (Dong-Chul 2016). 

𝑃(𝑥|𝑐𝑘) = ∏ 𝑃(𝑥𝑖 |𝑐𝑘)
𝑛
𝑖=0    

 (14) 

where 𝑥 is a 𝑛-dimensional vector.  

The Naïve Bayes classifier can then be calculated as:  

K = argmaxk p(ck)∏ P(xi|ck
n
i=0 )   

 (15) 

 
7.2.1.3 Metrics of evaluation and accuracy assessment  

In classification problem there are several evaluation metrics to assist the classification 

accuracy. These metrics can be described as follows: 

K-fold cross validation: the idea for cross-validation was first proposed by Larson (1931). Cross 

validation is a statistical method of evaluating and comparing learning algorithms. It divides the 

data set into two subsets: one is used to learn or train a model and the other is used to validate 

the model. The problem in such a model that it may demonstrate adequate prediction capability 

on the training data, but it might fail to predict future unseen data (Chauhan 2016). There are 

several approaches to estimate the accuracy of classifier using different combinations of k-fold 

cross- validation techniques. Kohavi (1995) and Dietterich (1998) recommended 10-fold cross-

validations as one of the best cross-validation techniques, as it mitigates biases despite variances 
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in the size of training and testing datasets. At the onset of 10-fold cross-validations, the dataset 

is initially stratified and partitioned into 10 equal (or nearly equal) subsets or folds. 

Subsequently, 10 iterations of training and validation are performed such that, within each 

iteration, a different fold of the data is held out for validation, while the rest of the folds are used 

for learning. A schematic illustration of the workflow of l0 k cross-validations in conjunction 

with Naïve Bayes is shown in Figure 23.  

The evaluation metrics can be summarized briefly as follows; Precision: is the proportion of 

positive cases that were correctly identified. The precision is the ratio tp /tp + tf where tp is the 

number of true positives (positive cases that were correctly identified) and fp is the number of 

false positives (negative cases identified as, positive). Recall: Is the proportion of actual positive 

cases which are correctly identified. F1: is the harmonic mean of precision and recall values for 

a classification problem. Area under ROC curve: the ROC (Receiver operating characteristic) 

curve is the plot between sensitivity and (1- specificity). (1- specificity) is also known as false 

positive rate and sensitivity is also known as True Positive rate. To bring this curve down to a 

single number, we find the area under this curve (AUC). Classification accuracy CA: which 

measures the number of correct predictions made divided by the total number of predictions 

made. 
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Figure 23 Schematic illustration of supervised machine learning algorithm using Naïve Bayes and k-

fold cross validation in the left side are the parameters resulting from Naïve Bayes classifier, and in 

the right side the data trained and tested, and the final evaluation is done using 10 k-fold cross 

validation (edited by H.A.). 

 

7.2.2 Building PNM using hybrid method 

I mainly used the software Avizo® to extract pore networks from digital images and analyze 

the pore properties of four carbonate rock samples. The reason I used Avizo software is because 

it is a specialized software that offers advanced capabilities for extracting pore networks from 

digital images and analyzing pore properties in rock samples. It provides the necessary tools 

and functionalities for this specific research task, enabling more accurate and comprehensive 

analysis. The algorithm of Avizo® is a hybrid algorithm proposed by Pudney (1996, 1998). 

This hybrid algorithm is called the Distance Ordered Homotopic Thinning (DOHT) method. It 

uses the distance map algorithm to compute the shortest distance of each point from void space 

to the background using Chamfer methods. Then the thinning algorithm is applied to get the 

skeletonization of the pore space and retain the topology guided by the distance map. In this 

approach the distance map marks each point of the skeleton with the minimum distance to the 

boundary of the space. The workflow of the hybrid method is illustrated by Youssef et al. 
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(2007). As in Figure 24 where the channels are described by a single line and pores are 

represented by a group of lines and vertices. The algorithm is conducted in three main steps. 

The first step is to identify the channel lines based on the skeleton of the pore space (Figure 

24a). Meanwhile, the identification and calculation of the connectivity number and the length 

for each line are determined, leading to the identification of the pore space tortuosity (Figure 

24b). Each line is represented by a set of connected voxels and the connectives of a line are 

equal to the connectivity of its two ends voxels. The second step is to partition the skeleton into 

a group of lines belonging to the same pore (Figure 24c). Finally, in the third step, the 

geometrical separation and labeling of pores are done by adding the binary image of the void 

space to the labeled cluster image (Figure 24d). Then comes a voxel growth constrained 

algorithm. This pore network extraction method maintains the advantages of the medial axis 

and watershed algorithm, i.e. retaining the topology of void space. Based on the above 

algorithms, this hybrid algorithm can determine pore connectivity and tortuosity. A subsample 

was extracted in the middle part of the 2mm sample at 680 x 660 x 1000 volume for the four 

samples as illustrated in Figure 25. Figure 26 presents the pore network model extracted using 

the aforementioned algorithms. 

 

Figure 24 Schematic illustration of the workflow of the Distance Ordered Homotopic Thinning 

algorithm where: a) Initial skeleton of the pore space b) Identifying channel lines (light blue), pore 

lines (yellow) and dead ends (dark blue), (c) Identifying thresholds in the channels lines (minimum 

diameter) and labeled pore segments, (d) Reconstruction of labeled pores for pore volume estimation. 

Youssef et al. (2007). 
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Figure 25 Micro-CT image of Sample 1966: a) 2D slice of the 26 mm plug with a resolution of 20 

microns; b) 2D slice of the 2 mm plug with a resolution of 2 microns; c) 3D view of the extracted 

volume (edited by H.A.). 

 

Figure 26 3D pore network representation with the corresponding assigned radii for the two 

samples.1966 to the left and 1967 to the right (edited by H.A.). 
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7.3 Transport properties 

7.3.1 Image derived permeability 

Absolute permeability is defined as the measurement of the capacity of a porous material to 

transmit a single-phase fluid. Its SI equivalent is the square meter however square micrometer 

is more common since it almost equivalent to one Darcy (d) = 0.9869233 µm  

Absolute permeability appears in Darcy's law see (Darcy, 1856) as a constant coefficient 

relating fluid, flow and material parameters: 

𝑄

𝑆
= 

𝐾

𝜇

∆𝑃

𝐿
     

 (16), 

where Q is the global flow rate that goes through the porous medium (unit: m3 .s-1), S is the 

cross section of the sample which the fluid goes through (unit: m2), K is the absolute 

permeability (unit: m2), µ is the dynamic viscosity of the flowing fluid (unit: Pa.s), ΔP is the 

pressure difference applied around the sample, L is the length of the sample in the flow direction 

(unit: m). 

 The permeability simulation is conducted using Avizo software with input of the binary images 

resulted from our classification scheme (with isolated pores excluded). To numerically estimate 

the absolute permeability the Stokes equation was solved based on a finite-volume method 

which builds the volume mesh directly on the voxels of the 3D pore data (Zhang et al. 2012): 

 ∇ . 𝑢 = 0 ; ∇𝑝 = 𝜇∇2𝑢     (17) 

Where u is the fluid viscosity vector, p is the pressure, µ is the dynamic viscosity. Permeability 

is then evaluated by the Darcy’s law. The Avizo XLab-Hydro solver has been validated by 

comparing to theoretical models and standard glass bead packaging models (Zhang et al. 2011). 

The equations system is a simplification of the Navier-Stokes: 

-an incompressible fluid, which means that its density is constant; 

-a Newtonian fluid, which means that its dynamic viscosity is a constant; 
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-a steady-state flow, which means that velocity does not vary over time; 

 -a laminar flow, which means that the concerned velocities are small enough not to produce 

turbulence. 

The last point is equivalent to considering flow at a low Reynolds number see (Reynolds, 1883). 

Once this equation system is solved, estimating the permeability coefficient consists of applying 

Darcy’s law. 

The experiment simulation in Avizo software is based on Stokes equations resolution; this is 

done in Absolute Permeability Experiment Simulation module. The boundary conditions are 

specified as: 

- A no-slip condition at fluid-solid interfaces. 

- One-voxel-wide plane of solid phase (with no-slip condition) is added on the faces of 

the image that are not perpendicular to the main flow direction. This allows isolation of the 

sample from the outside, allowing no flow out of the system. 

- Experimental setups are added on the faces of the image that are perpendicular to the 

main flow direction. They are designed in a manner that creates a stabilization zone where 

pressure is quasi static, and the fluid can freely spread on the input face of the sample. 

- Two among the following three conditions can be chosen by the user, the third being 

estimated from the chosen two: input pressure, output pressure, flow rate. 

For the simulation experiment representative sub-region of the sample was selected as shown 

in Figure 27. 
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Figure 27 Selecting a region of interest (ROI) for permeability simulation a) is the examined sample 
and, b) is the region of interest (edited by H.A.). 

7.3.2 Bulk sample laboratory measurement of permeability 

A cylendrical core (3.7 cm diameter, 7 cm height) from the rock samples was used for the bulk 

sample measurement to compare with the results from image analysis and simulations. The 

permeability were measured by core laboratory at Miskolc (AFKI) according to the standard 

methods. Where different flow rates throughout the sample are adjusted, and the corresponding 

Δp values are determined. From the resulting value pairs, the Klinkenberg effect was corrected 

to derive the permeability (Klinkenberg, 1941). 

In table 1 the Lab and image derived permeabilities are compared for all four samples. 
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Table 1 Comparing lab measured permeability against image derived permeability 

Sample ID 
Sample dimensions Permeability 

LAB µ-XCT Lab µ-XCT 

1966 

33 mm 

diameter × 

70 mm 

height 

0.598 mm × 

0.530 mm × 

0.560 mm 

33.1 mD 190 mD 

1967 

33 mm 

diameter × 

70 mm 

height 

0.392 mm × 

0.542 mm × 

0.514 mm 

54.32 mD 880 mD 

1979 

37 mm 

diameter × 

70 mm 

height 

0.456 mm × 

0.385 mm × 

0.450 mm  

0.0721 mD - 

1980 

37 mm 

diameter × 

70 mm 

height 

530 mm × 

490 mm × 

510 mm  

0.0037 mD - 

 

In the dry interval samples (1979 and 1980) both exhibited notably low permeability as 

measured in the laboratory. Additionally, the micro - XCT images did not reveal any discernible 

connections between the pores in these samples. In the productive interval samples (1966 and 

1967) both networks over-predict permeability. The purpose of the permeability laboratory 

experiment was to validate μ-XCT results, and provide a comprehensive understanding of the 

rock samples. Regarding the difference in magnitude between laboratory permeability 

measurements and μ-XCT results, this can be explained by several factors: 

-Scale Differences: Laboratory permeability measurements are typically conducted at a larger 

scale, involving larger sample volumes and longer flow paths. μ-XCT, on the other hand, 



76 
 

operates at a microscopic scale, where it captures the behavior of individual pores and their 

connections. The scale difference can lead to variations in the measured permeability values. 

-Resolution Limitations: μ-XCT has a limited resolution, and it may not capture the smallest 

pores and fine-scale heterogeneity present in the rock samples. These small-scale features can 

contribute significantly to permeability but may not be fully accounted for in the imaging 

technique. 

-Sample Heterogeneity: Rock samples often exhibit heterogeneity in their properties, including 

permeability. Laboratory measurements can provide an average permeability value for a larger 

sample, whereas μ-XCT captures variations in permeability at a finer scale. This inherent 

heterogeneity can contribute to differences in magnitude between the two measurement 

methods. 

 

-Porosity and Connectivity: The way pores are interconnected within the rock can impact 

permeability. Laboratory measurements may not capture the full complexity of pore 

connectivity, whereas μ-XCT can reveal details about pore networks. 
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8. Results 

8.1 Segmentation / binarization accuracy: 

The classification process intends to categorize every pixel in a digital image. Each class of 

pixel is based on a specific feature. The categorized data could then be used to retrieve useful 

information. In this study, these classes were applied to compute porosity and assist in the 

calculation of pore size distribution (PSD).  

One of the main challenges for the comparison of segmentation algorithms for X-ray images of 

porous materials is the lack of ground truth. That is the lack of knowledge of the optimal 

binarization results. Generally, two basic techniques are applied to the objective evaluation of 

image segmentation: analytical and experimental technique (Sharon 2000). 

 The analytical technique evaluates an image segmentation algorithm by analyzing the principle 

of the algorithm. The experimental technique, which is widely used, interprets and compares 

experiment results of image segmentation algorithms to make an evaluation, and it can be 

subdivided into two distinct methods: superiority evaluation method and deviation evaluation 

method (Brink 1992).  

The superiority evaluation method evaluates an image segmentation algorithm by utilizing 

human visual traits (Brink 1992). In the deviation evaluation method, firstly a standard 

segmentation image is provided for comparison criteria. Then the disparity between actual 

segmentation and ideal one can be calculated to evaluate the image segmentation algorithm 

(Brink 1992). 

In the experimental technique the different image segmentation algorithms were tested and 

compared in terms of three criteria: visual comparison, calculated parameters (pore size, pore 

volume) and pore count. Finally, the results were compared to a ground truth segmented image, 

where the latter is obtained by manual labeling of the pixels of the tested image based on the 

visual evaluation.  It is worth mentioning that a ground truth image is not necessarily an optimal 

segmentation since the evaluation of the ground truth image is done visually. Rather an 

additional datum to assists in making the final decision.  
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My dataset for training and testing consists of 100 tomograms, with 50 tomograms used for 

training and another subset of 50 tomograms used for testing. This subset of 100 tomograms 

was selected to best represent our samples in terms of investigated features. 

I created a ground truth images for validation by manual annotation and labeling. To create a 

training data and to classify the pixels in the images into labeled features representing pores and 

matrix constituents I used the aforementioned clustering and entropy algorithms on a Matlab 

environment. All the available features were classified into two groups. Each group has 

homogeneous features (in my case pores and matrix) and form a feature vector. The resulting 

features were used to train a Naive Bayes classifier. I calculated the mean and standard deviation 

of the posterior probabilities for each cluster in the training set and used these values to predict 

the posterior probability for each testing data point. To test the classifier and to avoid data 

overfitting, a 10 K-fold cross-validation was implemented. In that process, the data was 

stratified and divided into 10 folds. One-fold held out for testing and validation, and the other 

nine were for the training. This process was repeated for each fold iteratively. Our approach 

was evaluated using various evaluation metrics including under the curve (AUC), classification 

accuracy (CA), F1 score and precision. The AUC metric provides a measure of the overall 

quality of the classification, with higher values indicating better performance. The CA metric 

represents the proportion of correctly classified pixels, while the F1-score is a weighted average 

of the precision and recall metrics. Precision refers to the proportion of true positive 

classifications among all positive classifications, while recall measures the proportion of true 

positive classifications among all actual positive pixels. The classification accuracy resulting 

from each training was relatively high. It was reasonable since the unidentified threshold value 

was confined within a limited gray intensity range which was mainly represented by the 

transition zone lying in between the two phases. Nevertheless, the set of misclassified pixels 

detected by the supervised machine learning algorithm for each training set varied. In Fuzzy C-

Means and Type 2 Fuzzy Entropy, the number of the misclassified pixels was the highest. The 

reason for that could be attributed to the fact that in fuzzy classification, a single gray value 

could be a member in more than one group at the same time. In contrast, the Naïve Bayes 

algorithm does not consider spatial location. Classification accuracy in the Naïve Bayes 

classifier is listed in Table 2. The resulting binarized images for each segmentation method are 

shown in Figure 28.  
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Table 2 Comparison of classification accuracy on Naïve Bayes classifier with different feature vectors 

Classifier AUC CA F1 Precession Recall Misclassified 

Misclassified 

pixels gray 

range 

Naïve 

Bayes 

predicted 

threshold 

value 

K-means 0.965 0.877 0.871 0.897 0.877 156000 85-107 90 

Fuzzy c-

means 
0.967 0.888 0.882 0.904 0.888 403100 85-104 90 

Minimum 

cross 

entropy 

0.974 0.946 0.944 0.95 0.946 96410 85-91 90 

Fuzzy 

entropy 
0.984 0.965 0.965 0.967 0.965 180640 85-112 103 

 

 

Figure 28 2-D segmented images and binarized using unsupervised and supervised segmentation 

where pores appear in black and matrix in white (edited by H.A.) 
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8.1.1 Segmentation evaluation 

The performance of the unsupervised and supervised classification methods is evaluated in 

terms of how well they classified the pore shape pixels in the XCT images. The volume fraction 

and pore counts are shown in Figure 29. The geometrical pore size distribution was calculated 

from the 8-bit segmented image using Avizo software. The resulting pore size distribution 

coming from each segmentation method are shown in Figure 30a the calculations of P10, P50, 

and P90 values percentiles allowed the interpretation of geometrical pore size contribution in 

terms of macro-pore to the total pore volume (Figure 30b). In figure 30a the shapes of the 

distributions suggest some grouping possibilities. Seemingly three groups can be defined; 1- 

T2FE, 2- MINCE and k-Means, 3- Fuzzy c-means, Ground Trouth, and Naive Bayes. Moreover, 

in Table 3 I compare the results in terms of measured parameters resulting from each 

segmentation scheme. Additionally, and to clarify the sensitivity of the segmentation process to 

a certain threshold value, the global thresholding technique was used by selecting different 

threshold values in the vicinity of the identified or computed ones. The changes in pore counts 

and average pore radii indicate the thin margin that separates the pore constituent from each 

other and the background or the matrix constituent. Figure 31 shows a visual illustration of the 

sensitivity study. 

 

Figure 29 Porosity values and pore count obtained by using unsupervised and supervised classifiers 
(edited by H.A.). 



81 
 

 

Figure 30 a) Histogram and Normal curve for pore size distribution resulted for each segmentation 

method for the tested 2-d tomogram b) Pore size diameter obtained for six segmentation algorithms 

from the same tomogram (edited by H.A.). 

Table 3 Sensitivity table comparing different threshold values of measured parameters resulting from 

supervised, unsupervised, and global thresholding 

Supervised and 

unsupervised segmentation 

Segmentation 

method 

Threshold 

value 

Measured pore 

volume 

Average 

pore radii 

Pore 

count 

 
K-means 

108 0.38 0.0088 845 

Fuzzy c-

means 
- 0.37 0.0103 610 

MINCE 95 0.3024 0.008 796 

T2-FE 127 0.276 0.0117 494 

Naive Bayes 90 0.258 0.0075 756 

Global thresholding 

sensitivity 

Global 

thresholding 
85 0.24 0.0073 680 

Global 

thresholding 
92 0.28 0.077 767 

Global 

thresholding 
98 0.32 0.0081 811 
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Figure 31 Global thresholding applied to the original image with different threshold values. The pore 

is highlighted in green (edited by H.A.). 

8.2 Pore reconstruction and description 

8.2.1 Productive interval 

Sample 1966: A subsample was extracted in the middle part of the 2mm sample at 680 x 660 x 

1000 volume. The porosities were determined from the stack of 1000 XCT slices with a low 

voxel size at 2 microns. The binarized images resulting from the segmentation scheme were 

imported to Avizo® software for pore analysis. The average porosity obtained from XCT 

images is 24%, which is in good agreement with the effective porosity to the gas of 25 % 

measured by He porosimetry in the lab. The 3D pore distribution and two illustrations of the 

pores connection on a micron scale are shown in Figure32. For further analysis, (the pore size 

and throat size distribution Figure 33 and Table 4, channel length Figure 34, and coordination 

number Figure 35) of the given sample are investigated. 
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Figure 32 a) 3D view of the pore network of sample 1966 b) and c) are two illustrations of the pores 
connection on a micron scale (edited by H.A.). 

 

Figure 33 Sample 1966 pore size and throat size distribution (edited by H.A.). 
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Table 4 sample 1966 Pore volume and pore / throat sizes 

Sampl

e ID: 

1966 

Count 

Total 

pore 

volum

e (%) 

Connecte

d pore 

volume 

(%) 

Averag

e size 

Minimu

m size 

Maximu

m size 

Pore radii 

percentiles 

D10 

mm 

D50 

mm 

D90 

mm 

1966 

Pore: 

632 
24 22 

0.0609 0.014 0.132 
0.03

5 
0.06 

0.08

7 

Throat

: 2946 
0.0164 0.000604 0.0886 

0.00

3 

0.01

4 

0.03

3 

 

 

Figure 34 Sample 1966 channel length distribution (edited by H.A.). 
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Figure 35 Sample 1966 coordination number distribution (edited by H.A.). 

The interrelationship between pore throat and pore radii is shown in Figure 36a. The correlation 

between these two measured parameters is not so clear; still, a correlation is observed between 

the pores and throats when the throat radii are smaller than 65 microns, which is the most 

frequent throat size as shown in Figure 36b. Figure. 36a also shows the relationship between 

pore radii and coordination number; as is expected, the larger the radius, the higher the 

coordination number. 
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Figure 36 Pore radius/coordination number and pore radius/throat radius correlations in Sample 

1966, b) 3D view of the pore distribution pore sizes smaller than 0.08 mm (edited by H.A.). 

Sample 1967: The subsample was extracted in the middle part of the 2mm sample at 680 x 660 

x 800 volume. The porosities were determined from the stack of 800 XCT slices with a low 

voxel size of 2 microns. The binarized images resulting from the segmentation scheme were 

imported to Avizo® software for pore analysis. The average porosity obtained from XCT 

images is 27% which is in good agreement with the effective porosity to the gas of 28.04% 

measured by the He porosimetry in the lab. 3D pore distribution and an illustration of the 

connection between pores on a micron scale are shown in Figure 37. For further analysis, the 

connected porosity (pore and throat size distribution Figure 38 and Table 5, channel length 

distribution Figure 39, and coordination number Figure 40,) of the given sample are 

investigated.  
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Figure 37 a) Sample 1967 3D view of the pore network of sample 1967 b) illustration of pore 

connection on a micron scale (edited by H.A.). 

 

Figure 38 Sample 1967 pore and throat size distribution (edited by H.A.). 
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Table 5 Pore volume and pore / throat sizes in sample 1967 

Sampl

e ID: 

1967 

Count 

Total 

pore 

volum

e (%) 

Connecte

d pore 

volume 

(%) 

Averag

e size 

“mm” 

Minimu

m size 

“mm” 

Maximu

m size 

“mm” 

Pore radii 

percentiles 

D10 

mm 

D50 

mm 

D90 

mm 

1967 

Pore: 707 

27 25 

0.0535 0.0152 0.163 
0.02

9 

0.04

9 

0.08

6 

Throat:303

5 
0.0145 0.000604 0.0809 

0.00

3 

0.01

2 
0.03 

 

 

Figure 39 Sample 1967 channel length distribution (edited by H.A.). 
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Figure 40 Sample 1967 coordination number distribution (edited by H.A.). 

The interrelationship between pore throat / pore radii and pore throat / coordination number is 

shown in Figure 41a. The correlation between these two measured parameters is not so clear; 

still, a correlation is observed between the pores and throats when the throat radii are smaller 

than 65 microns. Which is the most frequent size as shown in Figure 41b. Figure 41a also 

shows the relationship between pore size / coordination number; as it is expected, the larger 

the radius, the higher the coordination number. 
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Figure 41 a) Pore radius/coordination number and pore radius/throat radius correlations in Sample 

1967, b) 3D view of the pore distribution with sizes smaller than 0.08 mm (edited by H.A.). 

8.2.2 Dry interval 

Sample 1979: The subsample was extracted in the middle part of the 2 mm sample at 260 × 260 

× 3000 volume. Porosities were determined from the stack of 3000 XCT slices with a low voxel 

size of 4 microns. The average porosity obtained from XCT images is 11.9%. The 3D pore 

network is presented in Figure 42. In Figure 42 a 3D view of the isolated pores are displayed. 

The pore size distribution is presented in Figure 43. This sample contains no pore connections, 

only solitary macro and micro pores, and the bulk of the channels were filled with carbonate 

cement as discovered during the thin section investigation. A few pore connections were 

observed randomly scattered across the sample. The pore radius varies between 4 μm and 15 

μm and the most dominant pore size is 9 μm as shown in Table 6. 



91 
 

 

Figure 42 Sample 1979 3D view of the pore space, with an example of the prevalent pore form in the 
sample (edited by H.A.). 

 

 

Figure 43 Sample 1979 42 Pore size distribution (edited by H.A.). 
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Table 6 Pore volume and pore size in sample 1979 

Sampl

e ID: 

Total 

pore 

volum

e (%) 

Total 

pore 

count 

Minimu

m pore 

size 

“mm” 

Averag

e pore 

size 

“mm” 

Maximu

m pore 

size 

“mm” 

Pore radii percentiles 

D 10 

“mm” 

D 50 

“mm” 

D 90 

“mm” 

1979 11.9 
26931

8 
0.00796 0.00636 0.0348 

0.0049

6 

0.0062

5 

0.0090

1 

 

Sample 1980: The subsample was extracted in the middle part of the 2 mm sample at sample at 

380 × 300 × 3700 volume. The porosities were determined from the stack of 3700 XCT slices 

with a low voxel size of 4 microns. The average porosity obtained from XCT images is 14%. 

The 3D pore network is presented in Figure 44. A 3D view of the isolated pores is displayed in 

Figure 44. The pore size distribution is presented in Figure 45. This sample doesn’t contain any 

pore connections, only solitary macro and micro pores, and the bulk of the channels were filled 

with carbonate cement as discovered during the thin section investigation. A few pore 

connections were observed randomly scattered across the sample. The microscopic analysis 

showed similar features as in the Sample 1979, where fossils, fossils fragments and even the 

matrix were dissolved and later totally filled with mosaic calcite. The pore radius varies between 

4 μm and 40 μm and the most dominant pore size is 13 μm as shown in Table 7.  
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Figure 44 Sample 1980 3D view of the pore space, with an example of the prevalent pore form in the 
sample (edited by H.A.). 

 

 

 

Figure 45 Sample 1980 pore size distribution (edited by H.A.). 
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Table 7 Pore volume and pore size in sample 1980 

Sample 

ID: 

Total 

pore 

volume 

(%) 

Total 

pore 

count 

Minimum 

pore size 

“mm” 

Average 

pore 

size 

“mm” 

Maximum 

pore size 

“mm” 

Pore radii percentiles 

D 10 

“mm” 

D 50 

“mm” 

D 90 

“mm” 

1980 14 1048575 0.00496 0.00836 0.0992 0.00496 0.007158 0.013471 

 

In Figure 46, the PSD for the four samples is compared and Figure 47 gives the D10, D50 and 

D90 percentiles for the samples. For the dry interval represented by samples 1979 and 1980, the 

most dominant pore size is 0.009 mm and 0.013 mm, respectively. Larger pore sizes are 

dominant in the other two samples from the productive interval, where the most frequent value 

is around 0.085 mm and large pore sizes as high as 0.14 mm were found. 

 

Figure 46 PSD for the four samples (edited by H.A.). 
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Figure 47 Pore size percentiles for four samples (edited by H.A.). 

The 2D pore volume fraction against the calculated 2D fractal dimension is depicted from 

Figure 48 to Figure 51. The 2D fractal dimension is a number higher than 1 and lower than 2. 1 

in the case of standard geometric features such as lines and circles, the more complex and 

irregular the shape is, the higher the number. For the two samples from the upper part a trend 

was observed between the porosity and the fractal dimension, indicating a direct relation. 

Moreover, the 2D fractal dimension has high values ranging between 1.65 and 1.67 indicating 

irregular pore shapes and rough pore surfaces. The pore structure takes complex irregular shapes 

and no correlation was observed between the pore volume and the fractal dimension for the 

lower interval samples (1979 and 1980). The pores have irregular complicated shapes, and this 

irregularity continues to appear at all depth intervals regardless of pore sizes. 
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Figure 48 Pore volume / 2D fractal dimension distribution (up), and 3D pore view showing the pore 

connectivity and the 3d fractal dimension in a macro scale (down) (edited by H.A.). 
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Figure 49 Pore volume / 2D fractal dimension distribution (up), and 3D pore view showing the pore 

connectivity and the 3D fractal dimension in a macro scale (down) (edited by H.A.). 
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Figure 50 Pore volume / 2D fractal dimension distribution (up), and 3D pore view showing the pore 

shapes in a macro scale and 3D fractal dimension (down) (edited by H.A.). 
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Figure 51 Pore volume / 2D fractal dimension distribution (up), and 3D pore view showing the pore 

shapes in a macro scale and 3D fractal dimension (down) (edited by H.A.). 
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8.3 Flow properties (permeability simulation) 

In order to study the reservoir properties and understand the fluid flow patterns, I have selected 

a region of interest within the sample as illustrated in Figure 27 for simulation experiments. The 

sample was encapsulated on four faces, creating a controlled experimental setup. To guide the 

flow along a specific direction, experimental setups were added to two opposite faces of the 

sample. This setup allows to investigate the flow behavior in three directions: X, Y, and Z. By 

repeating this process, I analyzed and evaluated the flow patterns and characteristics in each 

direction 

8.3.1 Productive interval 

8.3.1.1 Pore-Scale Flow Pathway Variations 

-Sample 1966: The flow streamlines in the X, Y, and Z direction are depicted, highlighting the 

flow behavior within the sample. The streamlines in X direction is shown in Figure 52a. The 

streamlines represented in red, indicating a mid-range velocity with relatively little change over 

the sample. However, distinctive regions with disconnected pores can be seen, where the flow 

magnitude is very low. These regions represent potential barriers or obstructions within the 

sample that hinder the flow. Further details about the flow properties are shown by a 2D slice 

through the flow streamlines Figure 52b. Certain areas of the pores show high flow magnitude, 

indicating favorable fluid pathways some connected pores exhibit a low velocity magnitude, 

suggesting possible constriction or flow resistance within these specific regions.  

In the Y direction, the flow velocities exhibit higher magnitudes, as depicted by the streamlines 

in Figure 53a. This suggests that the fluid flow in the Y direction experiences greater flow 

velocity. This indicates favorable flow conditions within the pore network in Y direction Figure 

53b. 

In the Z direction, the flow streamlines are depicted with lower magnitudes compared to the X 

and Y directions Figure 54a. The streamlines appear to be fewer and represented with lower 

velocities. This observation suggests that the fluid flow in the Z direction experiences less 

momentum and lower flow rates compared to the other directions. Examining the 2D slice 

through the flow in the Z direction reveals interesting characteristics in Figure 54b. Some 

regions within the sample exhibit high velocity magnitudes, indicating preferential pathways or 
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conduits through which the fluid flows with greater speed. On the other hand, there are regions 

with little or no flow, where the velocity magnitudes remain low. This disparity in flow behavior 

within the Z direction suggests the presence of heterogeneity or variations in the permeability 

or connectivity of pores in different regions. 

 

 

Figure 52 Sample 1966; a) Flow streamlines in the X direction are depicted in red, representing a 

mid-range velocity with relatively little change over the sample. b) A 2D slice through the flow 

streamlines reveals varying flow magnitudes within the pores. Some connected pores have high flow 

magnitude, whilst others display low velocity magnitude, indicating probable flow limits or 

constriction (edited by H.A.). 
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Figure 53 Sample 1966; a) Flow streamlines in the Y direction are depicted in yellow and red, 

representing a mid-range to high over the sample. b) A 2D slice through the flow streamlines reveals 

varying flow magnitudes within the pores. Some connected pores have high flow magnitude, whilst 

others display low velocity magnitude, indicating the presence of heterogeneity or variations in the 

permeability or connectivity of pores in different regions (edited by H.A.). 
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Figure 54 Sample 1966; a) Flow streamlines in the Z direction are depicted in purple, representing a 

low-range velocity with relatively little change over the sample. b) A 2D slice through the flow 

streamlines reveals varying flow magnitudes within the pores. Some connected pores have high flow 

magnitude, whilst others display low velocity magnitude, indicating probable flow limits or 

constriction (edited by H.A.). 

Interesting flow behavior can be seen in the 2D depiction of the average Y component velocity 

against the X component in Figure 55. The tendency may be seen on the plot, where the flow 

initially starts with higher values in the positive direction. As we move along the X axis, 

suggesting a change in the flow's direction or its orientation in the Y direction. The average 

velocity of the Y component achieves its highest value in the positive direction near the plot's 

center, where a prominent peak can be seen. This peak, which denotes a concentrated area of 

higher flow magnitude, can be related to certain reservoir structural elements or flow dynamics. 

Lower values of the flow's fluctuations between positive and negative directions are still present. 

The flow progressively increases once more at the end of the X axis, possibly denoting a change 

or transition in the flow behavior or the presence of certain flow routes or pathways. 

The average Z component velocity against the X component is shown in Figure 56. The flow 

initially starts with high velocity. The velocity varies between positive and negative values as 

we go along the X axis, indicating changes in the flow direction or variations in the velocity of 

the Z component. Then the flow stabilizes with no significant variation in the Z component's 
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velocity. Towards the end of the X axis, the plot shows another peaks, these peaks point to areas 

where the Z component velocity achieves its maximum amplitude, possibly pointing to the 

presence of certain flow patterns or structural elements that contribute to the observed velocity 

changes. 

 

Figure 55 Sample 1966; the variation of the average flow velocity along the layers of the 1966 

carbonate sample comparing the average velocity in the Y component as a function of X component. 

The peak of the flow velocity depicts a high flow zone, and the variation of the flow velocity denotes a 

change in the flow orientation (edited by H.A.). 
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Figure 56 Sample 1966; the variation of the average flow velocity along the layers of the 1966 

carbonate sample comparing the average velocity in the Z component as a function of X component. A 

high flow zone is depicted by the flow velocity peak, followed by a stable flow velocity, and then a high 

velocity with a change in direction (edited by H.A.). 

Sample 1967 

The flow streamlines in sample 1967 in the X, Y, and Z direction are depicted, highlighting the 

flow behavior within the sample. The streamlines in X direction is shown in Figure 57a. The 

streamlines represented in red, indicating a mid to high-range velocity with relatively little 

change over the sample. Further details about the flow properties are shown by a 2D slice 

through the flow streamlines Figure 57b. Certain areas of the pores show high flow magnitude, 

indicating favorable fluid pathways some connected pores exhibit a low velocity magnitude, 

suggesting possible constriction or flow resistance within these specific regions. 

 In the Y direction, similarly the flow velocities exhibit high magnitudes, as depicted by the 

streamlines in Figure 58a. The 2D slice through the flow, shows that the flow magnitude in the 

pores is high. This indicates favorable flow conditions within the pore network in Y and X 

direction Figure 58b. 

In the Z direction, the flow streamlines are depicted with lower magnitudes compared to the X 

and Y directions Figure 59a. The streamlines appear to be fewer and represented with lower 
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velocities. This observation suggests that the fluid flow in the Z direction experiences less 

momentum and lower flow rates compared to the other directions. 

 Examining the 2D slice through the flow in the Z direction. Figure 59a reveals that few regions 

within the sample exhibit high velocity magnitudes, indicating preferential pathways through 

which the fluid flows with greater speed. However, a significant portion of the pores exhibit 

weak flow, with low velocity magnitudes. This disparity in flow behavior within the Z direction 

suggests the presence of heterogeneity or variations in the permeability or connectivity of pores 

in different regions. 

 

Figure 57 Sample 1967; a) Flow streamlines in the X direction are depicted in red, representing a mid 

to high-range velocity with relatively little change over the sample. b) A 2D slice through the flow 

streamlines reveals varying flow magnitudes within the pores. Some connected pores have high flow 

magnitude, whilst others display low velocity magnitude, indicating probable flow limits or 

constriction (edited by H.A.). 
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Figure 58 Sample 1967; a) Flow streamlines in the Y direction are depicted in red, representing a 

mid-range to high over the sample. b) A 2D slice through the flow streamlines reveals high and 

uniform flow magnitudes within the pores. Some connected pores have high flow magnitude, whilst 

others display low velocity magnitude, indicating the presence of heterogeneity or variations in the 

permeability or connectivity of pores in different regions (edited by H.A.). 

 

Figure 59 Sample 1967; a) Flow streamlines in the Z direction are depicted in purple, representing a 

low-range velocity with relatively little change over the sample. b) A 2D slice through the flow 

streamlines reveals varying flow magnitudes within the pores. Some connected pores have high flow 

magnitude, whilst others display low velocity magnitude, indicating probable flow limits or 

constriction (edited by H.A.). 
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Figure 60 depicts the velocity variation of the Y component in relation to the X component. The 

plot displays the correlation between the velocity of the Y component and the X component, 

highlighting various patterns and trends. The velocity of the Y component begins at lower 

values at first and subsequently rises in both positive and negative directions. However, there is 

a strong concentration of the velocity in the positive direction, indicating a dominant flow 

pattern. Several small peaks can be observed, representing localized regions of relatively higher 

velocity within the sample. In the middle of the plot, a peak is observed, indicating a significant 

increase in the Y component velocity. Following the peak, the velocity gradually decreases 

again, suggesting a transition or change in flow behavior within that specific region. 

Figure 61 depicts the velocity variation of the Z component in relation to the X component, 

highlighting various patterns and trends. Initially, the Z component velocity starts at high values, 

indicating a relatively strong flow. The plot shows two peaks that are overlapped, suggesting 

regions of enhanced velocity in the positive direction. Following this, the velocity changes 

direction, leading to a peak in the negative direction. Subsequently, the plot displays a straight 

line, indicating a relatively stable flow with no significant variation in the Z component velocity. 

Towards the end of the plot, the velocity increases, and a peak is observed, highlighting a 

localized region of enhanced flow or altered flow behavior. 

 

Figure 60 Sample 1967; Relationship between Y component velocity and the X component, the 2D plot 

illustrates the variations in Y component velocity as a function of the X component (edited by H.A.). 
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Figure 61 Sample 1967; Relationship between Z component velocity and the X component, the 2D plot 

illustrates the variations in Z component velocity as a function of the X component (edited by H.A.). 

 

8.3.1.2 Understanding Reservoir Potential through Formation Factor Analysis 

Sample 1966: 

The effective electrical conductivity tensor gives global information about the electrical 

conduction capabilities of the material. To compute the dimensionless electrical conductivity 

tensor the following equation is solved as 

𝜀 𝜎
→

𝜎𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
=  𝜀(

𝐼
→+

1

𝑉𝑓
 ∫

  𝑛𝑓𝑠
→    

𝑏
→𝑑𝑠𝑆𝑓𝑥

,     (18) 

where ε is the porosity 𝜎𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛  is the solution electrical conductivity Vf is the volume of the 

fluid, Sfs is the area of fluid solid interface 𝑛𝑓𝑠, is the normal to the fluid-solid interface directed 

from the fluid to the solid phase. The inverse of the conductivity tensor is the formation factor 

tensor and the formation factor scalar is the average value of the eigenvalues of this last tensor. 

All this is computed by the Effective Formation Factor Calculation module in Avizo. The 

formation factor helps in evaluating the flow behavior and assessing the overall fluid flow 

potential within the porous medium. The reservoir potential is shown in Figure 62 based on the 

calculation of the formation factor as mentioned earlier. The observed velocity tensors and the 

3D rendering of the reservoir potential are in agreement. The reservoir potential appears to be 

relatively homogeneous in the X and Y directions, suggesting a rather uniform distribution of 
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the formation factors. This shows that the formation factor is generally consistent in these 

directions, resulting in less variety in the behavior of fluid flow. On the other hand, an apparent 

feature in the reservoir potential can be seen while in the z direction. In the midst of the 

reservoir, there occurs a cutoff or a change in the formation factor. This cutoff denotes a change 

or break in the connectivity or pore structure in the Z direction Figure 62. 

 

Figure 62 Sample 1966; the spatial distribution of the formation factor. The reservoir potential 

exhibits homogeneity in the X and Y directions, indicating a relatively uniform formation factor 

distribution. In contrast, the Z direction reveals a cutoff in the middle with a higher formation factor 

beyond it, suggesting a localized region of reduced fluid flow or lower permeability (edited by H.A.). 

 

Sample 1967: 

A 3d rendering of the reservoir potential in X, Y, and Z direction is illustrated in Figure 63. In 

the X direction, the reservoir potential exhibits high values throughout the sample, indicating a 

relatively consistent potential distribution. There is a small decrease observed in the lower part, 

suggesting a slight variation in the potential within that region. In the Y direction, the reservoir 

potential shows a range from medium to high values. There are some localized areas where a 

slight decrease in the potential can be observed. However, these variations are relatively small, 

indicating a relatively homogeneous potential distribution along the Y direction. Similarly, in 

the Z direction, the reservoir potential displays a mid to high range. There is a small decrease 

in the lower part of the sample, indicating a slight variation in the potential within that region. 



111 
 

 

Figure 63 Sample 1967; the spatial distribution of the formation factor. The reservoir potential 

exhibits low formation factor in X direction while higher formation factor observed in Y, and Z 

directions (edited by H.A.). 

 

8.3.1.3 Flow rate in the mirror of pore radius and channel length 

Sample 1966 

Flow rate in relation to throat radius is depicted in Figure 64. The figure illustrates how the flow 

rate varies with changes in throat radius. Initially, as the throat radius increases, the flow rate 

also increases, reaching a peak within the range of 12.5 to 18 microns. However, beyond this 

point, the flow rate begins to decrease as the throat radius continues to increase. The initial 

increase in flow rate with an increasing throat radius can be attributed to reduced flow 

resistance. As the throat radius widens, there is more space for the fluid to flow through, 

resulting in higher flow rates. However, this relationship is the subsequent decline in flow rate 

beyond a certain throat radius, which occurs within the range of 12.5 to 18 microns in this case. 

This behavior can be explained by the balance between the pressure drop across the throat and 

the velocity of the fluid. When the throat radius becomes too large, the fluid velocity decreases 

significantly due to the expansion of the flow path, causing a drop in flow rate. 

Flow rate is influenced by channel length, as observed in figure 65. The relationship between 

flow rate and channel length shows that as the channel length increases, the flow rate initially 

increases, reaching its maximum within the range of 50 to 100 microns. However, beyond this 

range, the flow rate starts to decrease as the channel length continues to increase. The initial 
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increase in flow rate with an extended channel length is primarily driven by reduced flow 

resistance. Longer channels offer more space for the fluid to flow through, resulting in higher 

flow rates. This behavior can be advantageous when designing systems that require higher fluid 

throughput. 

However, the decline in flow rate beyond the 50 to 100 micron range can be attributed to a 

combination of factors, including increased frictional losses and the development of laminar 

flow patterns at longer channel lengths. As the channel length becomes excessive, the flow rate 

becomes limited by these factors, causing a reduction in flow rate. 

 

Figure 64 Sample 1966: flow rate in the mirror of the equivalent throat radius (edited by H.A.). 

 

Figure 65 Sample 1966: flow rate in the mirror of channel length (edited by H.A.). 
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Sample 1967: 

Flow rate in relation to throat radius is depicted in Figure 66. The figure illustrates how the flow 

rate varies with changes in throat radius. Initially, as the throat radius increases, the flow rate 

also increases, reaching a peak within the range of 10 to 20 microns. However, beyond this 

point, the flow rate begins to decrease as the throat radius continues to increase. The initial 

increase in flow rate with an increasing throat radius can be attributed to reduced flow 

resistance. As the throat radius widens, there is more space for the fluid to flow through, 

resulting in higher flow rates. However, this relationship is the subsequent decline in flow rate 

beyond a certain throat radius, which occurs within the range of 10 to 20 microns in this case. 

This behavior can be explained by the balance between the pressure drop across the throat and 

the velocity of the fluid. When the throat radius becomes too large, the fluid velocity decreases 

significantly due to the expansion of the flow path, causing a drop in flow rate. 

Flow rate is influenced by channel length, as observed in figure 67. The relationship between 

flow rate and channel length shows that as the channel length increases, the flow rate initially 

increases, reaching its maximum within the range of 30 to 60 microns. However, beyond this 

range, the flow rate starts to decrease as the channel length continues to increase. The initial 

increase in flow rate with an extended channel length is primarily driven by reduced flow 

resistance. Longer channels offer more space for the fluid to flow through, resulting in higher 

flow rates. This behavior can be advantageous when designing systems that require higher fluid 

throughput. 

However, the decline in flow rate beyond the 50 to 100 micron range can be attributed to a 

combination of factors, including increased frictional losses and the development of laminar 

flow patterns at longer channel lengths. As the channel length becomes excessive, the flow rate 

becomes limited by these factors, causing a reduction in flow rate. 
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Figure 66 Sample 1966: flow rate in the mirror of throat radius (edited by H.A.). 

 

 

Figure 67 Sample 1967: flow rate in the mirror of the channel length (edited by H.A.). 
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9. Discussion 

The accurate determination of porosity in image-based measurement systems is a critical step 

in the characterization of porous media. Various models and methods must be considered to 

evaluate uncertainty propagation in each step of the system. For instance, De Santo Ballester 

(2015) emphasized the importance of evaluating uncertainty propagation in image-based 

measurement systems. In micro CT image analysis of porous carbonates, Rezaei et al. (2019) 

highlighted the crucial evaluation of various thresholding algorithms to avoid distorted 

outcomes. Additionally, Xiong (2016) noted that the finite resolution of imaging techniques is 

the main source of uncertainty in pore space characterization. To overcome these problems, 

Keller (2013) suggested to combine different techniques, such as Focused Ion Beam (FIB) / 

Scanning Electron Microscope (SEM), nitrogen adsorption, and FIB. 

Moreover, recent studies have demonstrated the potential of machine learning algorithms for 

automated analysis of complex geological structures. For example, Dos Anjos et al. (2021) 

demonstrated the effectiveness of deep learning for lithological classification of carbonate rock 

micro-CT images. This study highlights the potential of machine learning algorithms in gaining 

a deeper understanding of the petrophysical properties of rock samples. 

Furthermore, the study by Zhang (2021) provided valuable insights into the pore-scale 

characterization and pore network model simulations of multiphase flow in carbonate rocks. By 

utilizing advanced imaging techniques and computational simulations, the study shed light on 

the complex fluid behavior within the pore network, highlighting the importance of considering 

heterogeneity and connectivity in modeling fluid flow in porous media. 

In my study the porosity was determined by using different ML techniques. The K- means 

and FRFCM clustering tend to over-segment the pore volume by 7% to 12% compared to 

other segmentation algorithms, where pore volume varies between 25% and 30% (Figure 

30). In general, this variability in pore volume can be attributed to the presence of 

microcrystalline cement formed during diagenetic processes at the microstructural scale 

and deposited within the void space and on the pore edges, which cannot be resolved by 

the micro-XCT. This situation leads to images having variable pixel intensities including 
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the pore edges. These pixels of varying intensities would not have been segmented into 

the same class by different ML algorithms. This microcrystalline cement has been 

observed by microscopic examination of the thin sections taken from the same samples. 

Figure. 30a and Figure. 30b show that the detected pores count of the K-means clustering 

and MINCE methods is higher than that of the other methods. In the case of T2FE, the 

small pores are more frequent than the large ones. In the case of the FRFCM algorithm, 

the large pores are more dominant. Additionally, three groups can be defined; 1- T2FE, 2- 

MINCE and k-Means, 3- Fuzzy c-means, Ground Trouth, and Naive Bayes (Figure 30). 

Overall, Type 2 Fuzzy entropy classifier performed the best overall, achieving the highest AUC 

value of 0.984 and the highest CA, F1-score, precision, and recall values among all classifiers. 

The Minimum cross entropy classifier also performed well, with an AUC value of 0.974 and a 

CA of 0.946. The K-means and Fuzzy C-means classifiers achieved slightly lower performance, 

with CA values of 0.877 and 0.888, respectively. Both classifiers also had a higher number of 

misclassified pixels than the other two classifiers, with Fuzzy C-means having the highest 

number of misclassified pixels at 403,100. The reported gray intensity range of the misclassified 

pixels was similar for all classifiers, ranging from 85 to 112. However, the Naive Bayes show 

relatively reasonable pore size distribution, and the resulting binarized image was more 

realistic in comparison to the original image and reference images. 

The porosity distribution of the two samples from the productive interval 1966 and 1967 

appears heterogeneous, which is common among carbonate rocks. Generally speaking, this 

heterogeneity can be attributed to the lithologic variation and diagenetic processes. 

Microscopic examination of thin sections taken from the samples revealed different kinds 

of pore systems developed either during deposition (as primary porosity) or later on during 

diagenetic processes (as secondary intra- particle porosity i.e. moldic and vugs). The 

pores greatly varies in size, from a micrometer to millimeter scale. By comparing micro-

XCT tomograms with microscopic images, similar attributes can be found in terms of 

pore shapes and pore distribution. I also compared the measured pore volume acquired in 

the laboratory and those obtained from micro-XCT images, where similar values were 

detected by applying both techniques. After reconstructing 3D digital core samples, a 

subsample was extracted in the middle part of 2 mm samples (see Figure 25). The porosities 
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were determined from the stack of micro-XCT slices with a low voxel size at 2 µm and 4 

µm. After segmenting the images, the porosity is measured by counting the number of 

voxels in the void space from the whole images. It is noteworthy that in reservoir 

characterization, total porosity is used for overall hydrocarbon storage assessment, while 

effective porosity is used for hydrocarbon production assessment. It is therefore important 

to gain insights into both types of porosity (Goral et al. 2019). The porosity distribution 

of the two samples from the dry interval 1979 and 1980 appears heterogeneous. 

Microscopic examination of the thin sections taken from the same samples exhibits rapid 

dissolution and cementation. This can be attributed to the diagenesis processes that take 

place in a marine environment. The microscopic analysis in Figure 14 showed that the 

fossils and fossil fragments were dissolved and later filled with mosaic calcite. Inter and 

intra-granular pores can be seen. The majority of inter-granular pores were filled by calcite 

and the intra-granular pores remained mainly empty. 

The analysis of the velocity data revealed interesting patterns and trends in both samples 1966 

and 1967. In the 2D plots comparing the Y component velocity against the X component, I 

observed a fluctuating behavior with multiple small peaks, followed by a prominent peak in the 

middle (Figures 55 and Figure 60). This indicates regions of varying flow velocities within the 

samples, with some localized areas exhibiting higher velocity magnitudes. These variations in 

velocity can be attributed to variations in pore connectivity and fluid pathways within the 

samples. 

Similarly, in the 2D plots comparing the Z component velocity against the X component (Figure 

56 and Figure 61), a distinct pattern was observed with initial high values, followed by 

fluctuations and a peak in the negative direction. This suggests the presence of localized regions 

of higher and lower flow velocities within the samples. The presence of peaks at both ends of 

the plots indicates changes in flow behavior towards the boundaries of the samples. 

Regarding the potential analysis, the 3D rendering of the reservoir potential (formation factor) 

provided valuable insights into the distribution of reservoir properties. In both samples, the X 

direction showed a homogeneous potential distribution with a slightly high formation factor in 

the lower part. This indicates relatively uniform permeability in the X direction, with some 
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variations in the lower region. The Y direction exhibited a low range of formation factor, 

suggesting a relatively homogeneous potential distribution with minor localized variations. The 

Z direction showed a mid to high formation factor indicating a localized region of reduced flow 

or lower permeability. The variations in velocity and potential distributions highlight the 

heterogeneity and complexity of the fluid flow behavior within the samples. The presence of 

disconnected pores and variations in pore connectivity can significantly influence the flow 

patterns and magnitudes observed. 

Nevertheless, despite the heterogeneity observed in the samples, there are some common 

attributes in terms of flow behavior. Where, both samples exhibit higher flow velocities in the 

X and Y directions compared to the Z direction. 

In the X direction, the flow velocities are consistently high throughout the samples, indicating 

a relatively uniform flow behavior in this direction. This suggests that there are relatively well-

connected pore networks or pathways that facilitate fluid flow along the X direction. 

Similarly, in the Y direction, the flow velocities are also relatively high, with some localized 

variations. This indicates the presence of connected pathways or regions with higher 

permeability that enable fluid to flow more easily in the Y direction. 

In contrast, the Z direction shows lower flow velocities compared to the X and Y directions. 

This may indicate the presence of barriers or regions with lower permeability that impede the 

flow in the Z direction. The observed fluctuations and peaks in the Z component velocity plot 

may be attributed to localized regions of enhanced or restricted flow within the samples. 
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10. Scientific results 

My research focused on characterizing the origin and types of pores in the Sarmatian limestone, 

considering the distinct geological environments of the upper and lower intervals in the studied 

area. My research has successfully described the origin and types of pores present. I have 

identified various pore types within these intervals and examined the effects of dissolution 

during diagenesis on their formation and evolution.  

1- My investigation has revealed that two diagenetic environments, meteorite phreatic and 

marine diagenesis have played significant roles in the evolution of the pore system. During 

phreatic meteorice diagenesis I observed the advancement and development of porosity in the 

carbonates. This diagenetic environment is characterized by the presence of aggressive fluids 

in shallow marine environment that rapidly dissolve the deposited carbonate minerals, thereby 

creating secondary porosity.  

In contrast, in a marine environment, cementation is the predominant and most active 

diagenetic process, exerting a profound influence on porosity modification. In this 

environment most of the channels and the pore voids were filled with mosaic calcite and 

calcite mud. My findings indicate the occurrence of three types of cementations within the 

studied samples: dogtooth cement, blocky cement, and bladed cement. My findings highlight 

the complex interplay between dissolution and cementation during both meteoric phreatic 

and marine diagenesis. These diagenetic processes have a profound impact on the pore system 

within the Sarmatian limestone. Comparison of the productive and dry samples demonstrated 

well that the diagenetic environment has a profound influence on porosity increase and 

decease. In our case the limestone in both of the productive and the dry intervals were 

deposited in marine environment but diagenesis of the productive rocks happened in the 

meteoritic phreatic, until the diagenesis of the dry rocks started in meteoric vadose 

environment and finished in marine environment. We can conclude that during diagenesis of 

the productive part the relative sea level decreased considerably. This is in accordance with 

the results of Palotás (2014), who, based on sedimentological investigation of Sarmatian 

carbonates in the Buda Hills, revealed a drop of 5-7 m in sea level during the late 

Sarmatian. Due to this the water become so shallow that fresh water had a considerable 
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influence during diagenesis of the upper part of the investigated succession.  

 

By elucidating the specific origins, types, and effects of pore formation, my research contributes 

to a more comprehensive understanding of reservoir characterization. 

2. I developed an image analyzing method to analyze images and characterize the pore space 

by employing unsupervised machine learning. Where different ML techniques was tested 

including clustering and entropy techniques for classifying the pore gray scale values of the 

image pixels. Subsequently, the supervised machine learning method, Naïve Bayes, was 

employed to enhance the classification process. The Naïve Bayes is a probabilistic algorithm 

that calculates the likelihood of a data point belonging to a particular class based on the observed 

features. By considering the probability distribution of gray values, the model can estimate the 

likelihood of each pore being classified into different categories. K-fold cross-validation is a 

technique that helps assess the generalization capability of the model. The accuracy of the model 

was the highest using type-2 fuzzy entropy. In addition, I assess the accuracy of the 

classification results through two approaches: visual inspection and a comparison of the pore 

size distribution generated by each method. Furthermore, I compared the results obtained from 

my methods with a ground truth image, which was created through manual annotation and 

labeling. This comprehensive evaluation process allows to validate the effectiveness and 

reliability of my classification techniques in accurately characterizing the pore space. 

3. By evaluating the 3D pore network parameters for the examined samples I reached the 

following results: 

- Sample 1966 showed 24% porosity from image analysis and 25% from the He method in the 

lab. The average pore size was 0.0609 mm, with some as large as 0.132 mm. The average 

coordination number was 10, indicating high connectivity, reaching 35 in some cases. Pores and 

pore throats showed a correlation, especially for throat radii smaller than 65 microns. Larger 

pore throat radii were associated with higher coordination numbers.  

Similarly, sample 1967 had 27% porosity from image analysis and 25% from the He method. 

The average pore size was 0.0535 mm, with some as large as 0.163 mm. The average 
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coordination number was 5, with a maximum of 45, indicating significant connectivity. Pores 

and pore throats showed a correlation, particularly for throat radii smaller than 65 microns. 

Larger pore throat radii were associated with higher coordination numbers, confirming the 

relationship between pore size, pore throat size, and connectivity. 

4. Sample 1979 exhibited an average porosity of 11.9% based on XCT images and 8.28 % 

measured at the Lab. A 3D analysis of the pore space revealed that isolated pores were the 

predominant form in the sample. No pore connection was observed, with only individual macro 

and micro pores were present. The majority of the channels were filled with carbonate cement, 

as confirmed during the thin section investigation. However, a few random pore connections 

were detected. The pore radius ranged from 4 μm to 15 μm, with the most common pore size 

being 9 μm.  

Similarly, sample 1980 had an average porosity of 14% as determined from XCT images and 

11.4% measured at the Lab. The 3D analysis indicated that isolated pores were the dominant 

form in this sample as well. Like sample 1979, no pore connection was present, only solitary 

macro and micro pores appeared. The majority of channels were filled with carbonate cement, 

which was further confirmed through thin section investigation. A few scattered pore 

connections were observed randomly. Microscopic analysis revealed similar characteristics to 

sample 1979, with fossils, fossil fragments, and the matrix being dissolved and subsequently 

filled with mosaic calcite. The pore radius ranged from 4 μm to 40 μm, and the most prevalent 

pore size was 13 μm. 

5. Comparing the 2D pore volume fraction to the calculated 2D fractal dimension in the samples 

originated from the upper productive interval (1966 and 1967), an interesting trend was 

observed. direct relationship appeared between the porosity and the fractal dimension. 

Additionally, the 2D fractal dimension exhibited high values ranging between 1.65 and 1.67, 

indicating the presence of irregular pore shapes and rough pore surfaces. The pore structure 

displayed complex and irregular shapes. However, for the samples originated from the lower 

dry interval (1979 and 1980), no correlation was found between the pore volume and the fractal 

dimension. The pores in these samples exhibited irregular and complicated shapes, regardless 

of their sizes. This irregularity persisted throughout all four studied samples. 
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6. In order to study the reservoir properties and understand the fluid flow patterns, I have 

selected a region of interest within the sample for fluid flow simulation experiments. The sample 

was encapsulated on four faces, creating a controlled experimental setup. To guide the flow 

along a specific direction, experimental setups were added to two opposite faces of the sample. 

This setup allows to investigate the flow behavior in three directions: X, Y, and Z. By repeating 

this process, I analyzed and evaluated the flow patterns and characteristics in each direction. 

 The laboratory measurements recorded permeability values of 33.1 mD for sample 1966 and 

54.32 mD for sample 1967. In contrast, the permeability derived from the images was higher, 

with values of 190 mD for sample 1966 and 880 mD for sample 1967. This difference in 

permeability can be attributed to the selection of a highly porous region of interest for numerical 

simulation, specifically focusing on understanding the fluid flow behavior within the pore space. 

Furthermore, it is important to acknowledge the presence of inherent uncertainty in the 

permeability estimation due to various factors, including the limitations of the imaging 

technique and the methods employed for image processing. These factors can introduce 

potential errors and biases that may impact the accuracy of the derived permeability values. 

Therefore, while the derived permeability values from the images may provide valuable insights 

into the fluid flow behavior within the pore space, it is essential to consider and account for the 

inherent uncertainties associated with the imaging process and subsequent analysis. 

 7. In Sample 1966, the flow behavior was analyzed in three directions: X, Y, and Z. In the X 

direction, disconnected pores and low velocities were observed, indicating potential flow 

barriers and resistance. The Y direction showed higher velocities and favorable fluid pathways 

within the pore network. The Z direction had lower velocities and fewer streamlines, suggesting 

less momentum and lower flow rates compared to the other directions. In Sample 1967, a similar 

analysis revealed a consistent and relatively high velocity in the X direction, with both favorable 

and constricted flow regions. The Y direction exhibited high velocities and favorable flow 

conditions, while the Z direction showed lower velocities and fewer streamlines, indicating 

reduced momentum and flow rates compared to the X and Y directions.  

8. In Sample 1966 and 1967, the flow behavior was analyzed using the average Y and Z 

component velocities plotted against the X component. The plot showed changes in flow 

direction and velocity along the X axis. A prominent peak in the center indicated a concentrated 
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area of higher flow magnitude, while fluctuations between positive and negative directions were 

observed. Towards the end of the X axis, there were additional peaks suggesting specific flow 

patterns or structural elements influencing velocity changes. The average Z component velocity 

initially varied between positive and negative values but eventually stabilized with no 

significant variation. 

9. In both Sample 1966 and Sample 1967, the analysis of flow rate with respect to throat 

radius reveals a consistent pattern. Initially, as the throat radius increases, the flow rate rises, 

reaching its peak at specific values - 12.5 to 18 microns in Sample 1966 and 10 to 20 microns 

in Sample 1967. Beyond these optimal ranges, the flow rate diminishes as the throat radius 

continues to expand. This behavior is attributed to the interplay between pressure drop and 

fluid velocity, highlighting the critical role of throat radius in determining flow rate. 

The influence of channel length on flow rate follows a similar trend in both samples. As channel 

length increases, the flow rate initially increases, peaking at specific values - 50 to 100 microns 

in Sample 1966 and 30 to 60 microns in Sample 1967. However, exceeding these optimal ranges 

results in a decline in flow rate. The initial increase is primarily driven by reduced flow 

resistance in longer channels, offering more space for fluid to flow through. The subsequent 

decline is due to factors like increased frictional losses and the development of laminar flow 

patterns, which limit the flow rate. 

10. The effective formation factor was calculated through the effective formation factor 

Calculation module in Avizo. The formation factor helps in evaluating the flow behavior and 

assessing the overall fluid flow potential within the porous medium. The reservoir potential 

appears to be relatively homogeneous in the X and Y directions in both samples 1966 and 1967, 

suggesting a rather uniform distribution of the formation factors. This shows that the formation 

factor is generally consistent in these directions, resulting in less variety in the behavior of fluid 

flow. On the other hand, an apparent feature in the reservoir potential can be seen while in the 

z direction. In the midst of the reservoir, there occurs a cutoff or a change in the formation 

factor. This cutoff denotes a change or break in the connectivity or pore structure in the Z 

direction. 

11. The 3D pore analysis of samples 1979 and 1980 revealed the presence of isolated pores 

distributed randomly throughout the samples, indicating a lack of connectivity. This 
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characteristic makes the samples impermeable. Lab measurements confirmed the low 

permeability of these samples, with recorded values of 0.0721 mD for sample 1979 and 0.0037 

mD for sample 1980. These low permeability values can be attributed to the presence of sub-

micron pores that are below the resolution of the imaging technique, specifically at the 4-micron 

range, making them undetectable in the images. 
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11. Applicability of the results  

The results obtained from the analysis of Sarmatian carbonates have several practical 

implications and applications. Firstly, the findings provide valuable information on the 

microstructural features and development history of the pore space and the history of the 

formation of the pores. Furthermore, the analysis of these carbonate samples has implications 

for the evaluation and prediction of reservoir properties. The examination of pore structures and 

connectivity can help in predicting the fluid flow behavior and reservoir quality of similar 

carbonate rocks. This information is crucial for the exploration and production of hydrocarbon 

resources in carbonate reservoirs.  

Additionally, the results of the flow behavior analysis provide insights into the fluid flow 

patterns within the pore network of the studied samples. Understanding the flow behavior and 

connectivity of pores is essential for predicting reservoir performance and optimizing 

production strategies. 

Furthermore, the observations of irregular pore shapes, rough pore surfaces, and the lack of pore 

connectivity in some samples contribute to our understanding of the heterogeneity and 

complexity of carbonate reservoir systems. This knowledge can help in refining reservoir 

models and improving reservoir characterization and simulation techniques. 
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