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Chapter 1 

INTRODUCTION 

 

      It is generally recognized that geophysical measurements are frequently hampered by a 

variety of geological, geophysical, and environmental conditions, all of which cause the data to 

be contaminated with varying degrees of noise. Also, some of these noises are artificially 

created during the field data acquisition, such as those associated with instrumental component 

industrial noise, while others are naturally controlled due to diurnal variation effects on the 

potential fields. These noises strongly affect the quality of the geophysical outputs and have a 

significant impact on how the measured geophysical data is processed and interpreted. 

Therefore, the raw or field observations must be effectively processed before they can be used 

to interpret the subsurface variations. Data processing is a critical stage between the geophysical 

data gathering in the field and analyzing it in order to solve the noise or error prevalence 

problem accompanied by the field data measurements and attenuate the negative consequences 

of a noisy signal. Several sources and ways that deal with geophysical data processing have 

been thoroughly studied in the literature (Claerbout, 1985; Reynolds, 1997; Kearey et al, 2002; 

Milsom, 2003; Bevan, 2010; Hinze et al, 2013). Even though noise levels are expected to 

decrease further in the future as survey design and data processing methods improve, 

contemporary geophysical measurements frequently contain high enough amounts of noise to 

impede qualitative and quantitative interpretations. This motivates us to look into noise-

reduction strategies and see how effective they are at removing unwanted noise from collected 

geophysical datasets.  

      In geophysical exploration, the data is sometimes incomplete or sporadically sampled 

during data collecting due to physical and budgetary constraints. Obstacles, no-permit zones, 

and hardware issues with the equipment employed are all factors to consider. It raises a more 

complicated or an ill-posed problem of the missing data either the measuring points are taken 

over uniform (regular) or random (non-regular) grids. Missing datasets means that there are 

large substantial omissions in relevant data in the areas under investigation and hence, aliasing 

might occur, resulting in low resolution. As a result, we are directing our emphasis to the 

recovery of the missing data problem. A more tremendous trend in recent years has been the 

adoption of various processing strategies for handling incomplete sampling designs (Sacchi et 

al, 1998; Trad, 2009; Ma, 2013; Chai et al, 2020).  

https://www.wiley.com/en-us/search?pq=%7Crelevance%7Cauthor%3APhilip+Kearey
https://www.researchgate.net/profile/Bruce-Bevan?_sg%5B0%5D=sQGvUa4VBhGu7lCWXQaz5F8mC16JetsXR0NKdnUNxCSMmjsv20lPwsX-X9BKmm70Z8C_rMA.3AqnsSRBGh0D7dF2QygIldzw6Vgmhm25e8a4L6UNiAP-PYGV38MhJIb6zLzfUPMrZZPY3H4hHIPKuT6VQfSRwg.bDiOScFuYudWzn6Fy5tHBjjE9cU0C7Cn0PCGPzouNNSPAQ1wZan206hyM0xQZ0hZoavtUtsr80p2WMfjDtAofg&_sg%5B1%5D=nCtbMT4v0Wyl5RN7iGnKq27yj0RGLbuXUKi7tvVs0ZfaAfZ0DMv029TUrCOdGzEdF6K-HSU.C5N6V1bdIb1-3XZRWK2LzrbdAwuZ5he9VxO9OZk4l2qspQjIurpEfuQbs96q5aj-GoZHQzK5nnnnO-y4bjnWqA
https://pubmed.ncbi.nlm.nih.gov/?term=Chai%20X%5BAuthor%5D
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      In accordance with the above-mentioned concerns, we introduce the Fourier transform as 

an effective signal processing tool that may be designed to boost both 1D wavelets and 2D 

potential magnetic and gravity datasets. Among numerous geophysical data processing 

methods, the Fourier transform plays a vital role in signal processing to enhance the quality of 

measured datasets that contain simple or complex noises during the field survey. We shall 

encounter the Fourier transform as a filtering technique for improving the performance of the 

1D and 2D geophysical data outputs. The discrete Fourier transformation is used to convert 

discrete noiseless or noisy time-domain datasets into a frequency-dependent representation. The 

discrete Fourier transform has a wide range of applications including polynomial multiplication 

estimate, acquiring a large number of objects via radar echoes, correlation, and spectral 

analysis, as well as determining the signal's frequency spectrum, which is our work's primary 

geophysical purpose. Moreover, the Fourier Transform enables us to evaluate waveforms 

uniquely and powerfully, such as sound waves, electromagnetic fields, elevation from hill to 

location, and so on.  

      In fact, the traditional Fourier transform (DFT-FT) based on simple Least square method 

can give optimal solution in the case of Gaussian noisy data, while it is not effective enough 

when dealing with more complicated noisy data containing outliers (e.g. Cauchy noise-

contaminated data). In addition, the traditional DFT approach is not applicable and inefficient 

causing several shortcomings when analyzing incomplete or missing datasets. These are the 

main reasons that prompt us to use the deviation vector of a weighted norm to be minimized 

through the inversion method of iteratively reweighted least-squares Fourier transformation 

(2D IRLS-FT) (Dobróka et al. 2016). In that regard, the introduced inversion algorithm 

proceeds to datasets sampled in both 1D and 2D. Accordingly, we can summarize the objectives 

of this thesis as follows: (1) reducing the outlier sensitivity using the IRLS inversion-based FT 

compared to the traditional discrete Fourier transform (DFT), (2) applying the inversion 

algorithm for handling the non-regular sampling problem, and (3) processing of the incomplete 

or missing datasets sampled both equidistantly and non-equidistantly utilizing our newly 

developed inversion approach. For noise reduction, Dobróka et al (2015) handled a one-

dimensional (1D) inversion-based Fourier transformation (S-IRLS-FT) method which was 

developed and generalized to two-dimensional (2D) inversion, providing accurate and efficient 

results in the field of the reduction to the pole of the magnetic datasets (Dobróka et al 2017). 

The inversion method's efficacy, precision, and noise reduction capacity were all proved by the 

results. In the framework of this inversion-based Fourier transformation method, the continuous 
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Fourier spectrum is discretized using the series expansion method to solve our over-determined 

inverse problem in the form of the expansion coefficients. The series expansion-based inversion 

methods were effectively employed for the interpretation of borehole geophysical data (Szabó, 

2011 and 2015) as well as processing of induced polarization (IP) datasets (Turai and Dobróka, 

2011). Moreover, where integration is necessary, the elements of the Jacobian matrix are slowly 

estimated and hence, require more time to calculate. This problem can be solved by using the 

Hermite functions as basis functions making use of the favor that they are eigenfunctions of the 

Fourier transformation which allow quick and accurate determination of the elements of the 

Jacobian matrix. To make the inversion algorithm more robust and resistant, the Cauchy 

weights (Amundsen, 1991) are often integrated into an Iteratively Reweighted Least Square 

(IRLS) algorithm (Scales et al, 1988), but in this case, the computation of the scale parameters 

is problematic because they should be known in advance. As a result, the most frequent value 

(MFV) method (Steiner, 1988 and 1997) is used to handle this problem by iteratively 

calculating the Cauchy Steiner weights through an internal iteration loop instead of Cauchy 

weights in a manner that minimizes data loss. As proved by Dobróka et al (1991), combining 

the algorithm of Iteratively Reweighted Least Square (IRLS) with Steiner weights given by the 

most frequent value (MFV) method is a particularly beneficial operation. Inserting the weights 

into the IRLS inversion process leads each data point's error margin to contribute to the solution 

resulting in a more accurate, stable, and robust inversion outcome as well as successful and 

effective outliers reduction. The applications of the most frequent value (MFV) have been 

introduced by many authors demonstrating numerous benefits using least-squares or other 

traditional statistical procedures (Ferenczy et al. 1990; Steiner and Hajagos 1994; Szucs and 

Civan 1996; Szucs et al, 2006; Szegedi and Dobróka, 2014; Zhang, 2017).  

      In this study, MATLAB-based codes for the proposed methods of conventional discrete 

Fourier transform (2D DFT) and inversion-based Fourier transformation (2D IRLS-FT) are 

implemented on synthetic 1D wavelets, synthetic 2D magnetic and gravity datasets, and real 

gravity field data measurements. First, the outlier sensitivity rejection for 1D data sampled 

equidistantly is assessed using both the DFT and IRLS-FT methods. Moreover, solving the non-

regular sampling problem by our inversion method is evaluated on 1D complete datasets 

sampled randomly as well as random walk measurement positioning. In addition, a newly 

developed inversion-based Fourier transformation algorithm is performed on 1D incomplete or 

missing datasets sampled both regularly and non-regularly, and it is effectively extended to the 

incomplete block sampling designs.  On the other hand, for noise rejection analyzing purposes, 
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equidistantly sampled 2D noise-free and noisy synthetic magnetic datasets are subjected to the 

above-mentioned noise filtering-based 2D Fourier transformation techniques in the framework 

of reduction to the pole. The inversion method is also tested on the non-regular complete 

magnetic datasets sampled with the same two configurations as 1D data. We then evaluate the 

incomplete sampling problem of the 2D noise-free and noisy magnetic data taken over both 

regular and random-walk sampling grids. Furthermore, both the traditional DFT and  IRLS 

inversion-based FT methods are tested and evaluated on 2D noisy and noise-free synthetic 

gravitational datasets generated using a model of a right rectangular prism. The model is 

initially applied to a regular grid before being randomized to produce irregularly sampled 

gravity intervals. Similar to the magnetic methodology, the DFT method is only applied to 

gravitational datasets equidistantly sampled, as it is ineffective for irregular intervals, and the 

results are then compared to those found by the inversion algorithm (2D IRLS-FT) applied to 

datasets sampled both equidistantly and non-equidistantly. New geophysical applicability in the 

field of low-pass filtering of such 2D gravitational datasets is successfully introduced in the 

present investigation. Besides, the 2D incomplete noise-free and noisy gravity data are then 

comprehensively subjected to the newly proposed inversion-based Fourier transformation 

algorithms on an equidistantly and non-equidistantly sampled basis. Finally, a field example is 

introduced as a case study in the western central part of Sinai Peninsula, Egypt to effectively 

evaluate the noise sensitivity reduction of the low-pass filtering-based Fourier transformation 

on real equidistantly and non-equidistantly sampled gravitational field datasets. Such real field 

gravity datasets measured over both equidistant and non-equidistant grids are also involved to 

assess the incomplete or missing sampling problem using our newly developed inversion-based 

low-pass filtering. The results of 1D and 2D synthetic datasets, as well as the gravity field 

measurements, indicated the newly developed inversion method's efficiency, resistance, and 

noise rejection capacity in both the space and frequency domains rolling out a new and cost-

effective means of coping with incomplete sample issues that may arise during the collection 

of a wide range of field data. 
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Chapter 2 

THE GEOPHYSICAL INVERSION METHODS 

 

      Geophysics' purpose is to use observations of physical phenomena to determine the 

characteristics of the interior of the earth from the surface and/or boreholes. Thus, the manner 

how determining the interested targets of the subsurface structure and rock properties from the 

surface geophysical measurements is a great challenge for all geophysicists. Deriving the earth's 

inner model from the surface data collected during field acquisition through some quantitative 

tools applications is the aim of the inverse problem. Before doing it the selection of a suitable 

geophysical model, and the specification of its parameters is necessary in formulating a forward 

problem. It’s relationship can be used to calculate theoretical data for the assumed earth model. 

Figure 1 depicts two charts highlighting the distinctions between forward and inverse 

geophysical problems. 

 

Figure 1. a) Forward problem: synthetic data computation using known input model 

parameters, b) Inverse problem: model parameters estimation from the observational field 

datasets.  

      The geophysical inversion methods have been thoroughly explained in many kinds of 

literature (Menke, 1984; Tarantola 1987; Meju, 1994; Oldenburg and Yaoguo Li, 2005; Sen 

and Stoffa, 2013; Menke, 2018). The geophysical inversion methods can be categorized into 

two main items according to (Sen and Stoffa, 2013). The first refers to the direct inversion 

methods in which the model parameters can be retrieved directly from the data observed. On 

the other hand, model-based inversion approaches are of particular importance since they 

compare theoretical data for a supposed model with observed ones. In our study, the following 

section introduces and briefly discusses some local inversion methods. 

 

https://www.researchgate.net/profile/Douglas-Oldenburg?_sg%5B0%5D=Wq_jE73TtXPQCZwu0puMsZJBHEyx24bD6Wp906E-JjG0YoiBzSFO4Xz5fagrOOrFp_Pp3nQ.IovQF-QHbI0RnkXfzHAxa6gliz8h4S4RvBvNGpOcFrkJyH6SZcBDh3GkfnzMVfhZxi_rzAjnLwFc3ugPKGupPQ.30Wz5l1K8JWNQ7DVBeAlBrqe60Ia9T9ko1s4z4BiB3jElMaQyEHn3jsd-fOGov8o_EhUl9a8M7ymkk9T41EJYw&_sg%5B1%5D=CNj1YlOIlfrxvpORUzV9t6knH0RyCmwXnvXpAJt2_Y43lSn1cu50abKu2RJVJNFBIz4FJNE.o3jQW15dSUvloXJavYd1gNdz7fHeQjpJ_YHMOLJDGTXr7dCQJI_zdNEL-S0HIPX2wLu62WFw9WhYb5bbKsFovw
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2.1. THE STRAIGHTFORWARD INTERPRETATION METHODS 

      It is important to note that the terminology ‘straightforward’ or ‘direct’ is commonly 

dedicated to some inversion approaches because of the direct derivation of the earth's model 

parameters from the data. In these methods, the values of the model parameters should be 

initially set such as velocity, density, etc, however, the model's variability in one or two-

dimensional domains must be taken into our consideration. Furthermore, the physics of the 

forward problem is used to create direct inversion approaches (Sen and Stoffa, 2013). Because 

of their speed and ease of implementation, direct inversion methods play an important role in a 

variety of geophysical applications. On the other hand, these methods are disadvantageous and 

not the optimal solution in some cases when compared to other inversion methods due to their 

inaccuracy and limited reconstruction (Kazufumi and Bangti, 2014). Several geophysical 

applications of these inversion approaches, particularly in the context of seismology, have been 

explained through much literature (Fuchs and Muller 1971; Yagle and Levy, 1985; Singh et al. 

1989). It is well known that the direct- or operator-based inversion methods are highly sensitive 

and affected by the data that is incomplete and mostly contaminated with noise. The main 

reason since it's not always evident how to condition the operator to minimize the negative 

impacts of applying these operators to field data.  This problem can be effectively solved by 

employing the data uncertainties in the inversion procedure as proven by the model-based 

inversion methods (Sen and Stoffa, 2013).   

2.2. THE MODEL-BASED INVERSION METHODS 

      In the model-based inversion approach, the model is regarded as the solution to the inverse 

problem if the match between observed and synthetic data created for an assumed model is 

satisfactory. On the other hand, when the misfit between the measured and calculated data is 

high, the actual values of the model parameters are modified in such a way to agree with the 

real field datasets. In that case, the synthetic data are recalculated and evaluated to the 

observations once more. This procedure is progressively continued and repeated over several 

iteration steps until an acceptable fit is achieved between the predictions and observed data. 

The matched criteria in the last iteration step refer to the most promising model that simulates 

the real subsurface geological structure and hence it can be accepted as the inverse problem 

solution. Therefore, the inversion can be thought of as an optimization process aimed at finding 

the optimum model that effectively describes the observations. The algorithm of the inversion 

process can be mathematically started by considering a model of the earth's interior whose 

parameters are set as a column vector as follows: 

https://www.amazon.com/Bangti-Jin/e/B00NGDP594?ref_=dbs_p_pbk_r00_abau_000000
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�⃑⃑� =  {𝑚1,𝑚2, 𝑚3, … . . , 𝑚𝑀 }𝑇,                                                  (1) 

where 𝑀 is the total number of model parameters and 𝑇 is a matrix transpose. Forward 

computation with the above-mentioned column vector of model parameters 𝑚 is used to 

produce synthetic data 𝑑 𝑠𝑦𝑛 through the so-called response function as: 𝑑 𝑠𝑦𝑛 = 𝑔 (�⃑⃑� ),                                                            (2) 

where 𝑔  is the forward modeling operator which is a non-linear operator in most geophysical 

problems. In that case, the synthetic or theoretical data can be estimated in a discrete form of 𝑁 

dimensional column vector as follows: 𝑑 𝑠𝑦𝑛 = {𝑑1(𝑠𝑦𝑛), 𝑑2(𝑠𝑦𝑛), 𝑑3(𝑠𝑦𝑛), … . . , 𝑑𝑁(𝑠𝑦𝑛) }𝑇
.                                (3) 

      Such synthetic datasets are then compared to those measured during the process of field 

geophysical survey 𝑑 𝑚𝑒𝑎𝑠 at 𝑁 number of ground stations: 

𝑑 𝑚𝑒𝑎𝑠 = {𝑑1(𝑚𝑒𝑎𝑠), 𝑑2(𝑚𝑒𝑎𝑠), 𝑑3(𝑚𝑒𝑎𝑠) … . . , 𝑑𝑁(𝑚𝑒𝑎𝑠) }𝑇
.                          (4) 

      The measure of acceptability of an earth model illustrated in Eq. 2 can be evaluated by 

estimating the misfit between the measured and synthetic datasets. This can be performed with 

the help of objective function or energy function as follows: 𝑒 = 𝑑 𝑚𝑒𝑎𝑠 − 𝑑 𝑠𝑦𝑛 = 𝑑 𝑚𝑒𝑎𝑠 − 𝑔  (�⃑⃑� ).                                    (5) 

 Regarding 𝐿𝑝 norm (Menke 1984), the error function can be introduced as:  ‖𝑒‖𝑝 = [∑ |𝑒𝑖|𝑝𝑠𝑖=1 ]1 𝑃⁄ ,                                                     (6) 

while in the common case of 𝐿2 norm, it can be defined as: ‖𝑒‖2 = [∑ |𝑒𝑖|2𝑠𝑖=1 ]1 2⁄ ,                                                     (7) 

or in vectorial form as: 

‖𝑒‖2 = [(𝑑 𝑚𝑒𝑎𝑠 − 𝑔  (�⃑⃑� ))𝑇  (𝑑 𝑚𝑒𝑎𝑠 − 𝑔  (�⃑⃑� ))]1/2
.                             (8) 

      𝐿2 norm is widely used in most geophysical applications while in some cases 𝐿1 norm can 

be applied as introduced by (Claerbout and Muir 1973). The most commonly model-based 

inversion methods applied for geophysical problems are the linear or linearized inversion 

optimization approaches. Therefore, this study will briefly shed light on some of the linear 

inversion approaches that are also essential to reaching our goal. 
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2.2.1. THE LINEAR INVERSION OPTIMIZATION APPROACHES 

      Among all geophysical approaches, linearized inversion methods are the most well-known 

in the last decades which assign the solution to a local optimum of the objective function. The 

major assumption of these linear inversion methods is based on the fact that the model 

parameters have a linear impact on the data. It's worth noticing that by inserting a matrix 𝐺 instead of the forward modeling vector-vector function 𝑔  stated above in Eq. 2, the 

linearization processes significantly simplify the response function in the following manner: 𝑑 = 𝐺 �⃑⃑� .                                                                 (9) 

      The data-model relationship can be successfully linearized if specific conditions are met, 

which vary from one geophysical approach to another. The strategy of the linearization process 

can be extremely understood by considering small disturbances 𝛿�⃑⃑�  (model correction vector) 

added to the reference initial model �⃑⃑� 0 to compute the observed datasets 𝑑 𝑜𝑏𝑠 using the forward 

modeling operator 𝑔  as follows: 𝑑 𝑜𝑏𝑠  = 𝑔  (�⃑⃑� 0 +  𝛿�⃑⃑� ),                                                  (10) 

while the synthetic data can be defined as: 𝑑 𝑠𝑦𝑛 = 𝑔  (�⃑⃑� 0).                                                    (11) 

      In the first-order term, the observed data obtained in Eq. 10 can be distributed by the Taylor 

series expansion method concerning the start model �⃑⃑� 0 as: 𝑑𝑘 (�⃑⃑� 0 +  𝛿�⃑⃑� ) =  𝑔𝑘 (�⃑⃑� 0) + ∑ (𝜕𝑔𝑘𝜕𝑚𝑗)�⃑⃑⃑� 0𝑀𝑗=1  𝛿𝑚𝑗,                           (12) 

where 𝑘 = 1, 2, … , 𝑁 and (𝜕𝑔𝑘𝜕𝑚𝑗)�⃑⃑⃑� 0 is the jacobian matrix that constitutes the partial derivatives 

of synthetic data concerning model parameters. In that case, the observed data can be given as: 𝑑 𝑘 = 𝑑 𝑘(0) + ∑ (𝜕𝑔𝑘𝜕𝑚𝑗)�⃑⃑⃑� 0𝑀𝑗=1 𝛿𝑚𝑗.                                      (13) 

      By simplifying the jacobian matrix as 𝐺  and 𝛿𝑑  as the difference between the measured 

and synthetic data 𝛿𝑑 =  𝐺 𝛿�⃑⃑� ,                                                        (14) 
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we can now formulate a linear expression for the data and model parameters disturbances. 

Referring to Eq. 5, the deviation vector can be defined as: 𝑒 =  𝑑 𝑜𝑏𝑠 - 𝑑 𝑠𝑦𝑛 − 𝐺 𝛿�⃑⃑� ,                                                  (15) 

and it can be simply written with the linearized inverse problem as:  𝑒 =  𝑑 𝑚𝑒𝑎𝑠 -  𝐺 𝛿�⃑⃑� ,                                                    (16) 

where 𝛿dmeas  =  𝑑 𝑚𝑒𝑎𝑠  - 𝑑 𝑠𝑦𝑛. Over several iterations, the response function is linearized 

subsequently where the initial model �⃑⃑� 0 is replaced by a new model m in each iteration step 

until a stop criterion is met. Finally, the inverse problem can be solved by inverting 𝐺 and hence, 

we can estimate an update to the model vector as follows: �⃑⃑� =  𝐺−1 𝑑 ,                                                            (17) 

where 𝐺−1 refers to the inverse matrix. One of the most important aspects when dealing with 

the geophysical inversion methods is to accurately determine the type of inverse problem that 

has to be solved. Depending on the relationship between the number of data and model 

parameters, the inverse problem can be classified into three main categories. When the number 

of field data points exceeds that of the model parameters, the inverse problem is said to be over-

determined. On the other hand, the inverse problem can be realized as underdetermined if the 

model has more parameters than the number of observed data. Combing the characteristics of 

both inversions leads to the mixed-determined inverse problem. Several inversion methods 

have been introduced by many authors to solve the above-mentioned inverse problems such as 

(Backus and Gilbert, 1967; Backus,1970; Parker, 1977; Jackson, 1979). 

2.2.1.1. Solution to the Inverse Problem with an Over-determination 

      As described above, the inverse problem can be recognized with an over-determination 

aspect when we have enough data (N) collected during the field geophysical survey compared 

to the number of unknown model parameters (i.e. 𝑁 > 𝑀). In such a situation, all model 

parameters are represented in the data and hence the observed data points should be located on 

a straight line to be effectively fitted by the equations in a linear system. In that sense, the 

methods of least squares are the optimum procedures for obtaining the most suitable fit to the 

data with the smallest non-zero error value (Sen and Stoffa, 2013). 
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2.2.1.1.1. The Gaussian Least Squares (LSQ) 

      The Gaussian Least Squares can be considered as one of the most significant linear 

inversion methods based on minimizing the 𝐿2 norm of the deviation vector. Gauss (1809) was 

the first to introduce and formulate the mathematical expressions of this inversion method for 

solving the over-determined inverse problem. The objective function 𝐸 that has to be minimized 

for estimating the misfit between the measured and theoretical data can be given as: 

E = ∑ 𝑒𝑘2𝑁𝑘=1  = ∑ (𝑑𝑘 − ∑ 𝐺𝑘𝑖𝑀𝑖=1  𝑚𝑖)𝑁𝑘=1 (𝑑𝑘 − ∑ 𝐺𝑘𝑗𝑀𝑗=1  𝑚𝑗),                  (18) 

which can be then differentiated in terms of the model parameters with derivatives equal to zero 

to get it's minimal 
𝜕𝐸𝜕𝑚𝑙 = 0 (l=1,…,M). The differentiation process is applied separately to all 

terms of Eq. 18 resulting in an expression as follows:  ∑ 𝑚𝑖𝑀𝑖=1  ∑ 𝐺𝑘𝑖𝑁𝑘=1  𝐺𝑘𝑙 = ∑  𝑑𝑘𝐺𝑘𝑙𝑁𝑘=1 ,                                     (19) 

which can be written in a vectorial form as: 𝐺𝑇𝐺 �⃑⃑� =  𝐺𝑇  𝑑 .                                                       (20) 

      By multiplying both sides by (𝐺𝑇𝐺)−1
 and introducing generalized inverse matrix 𝐺−𝑔 = (𝐺𝑇𝐺)−1  𝐺𝑇, the least-squares estimate of the model can be defined as: 

�⃑⃑� =   𝐺−𝑔 𝑑 .                                                        (21) 

      Moreover, the matrix (𝐺𝑇𝐺)−1  𝐺𝑇 is used to estimate the model parameters through 

inverting the linear equation system. It is important to note that the elements of a matrix 𝐺 are 

consisting of (𝑁 × 𝑀), while those for the symmetric square matrix 𝐺𝑇𝐺 are (𝑀 × 𝑀). 

Depending on the matrix (𝐺𝑇𝐺)−1
, the solution of the least-squares can be successfully found 

taking into our consideration that the model parameters should be represented by several data 

vector information.  

2.2.1.1.2. The Weighted Gaussian Least Squares (WLSQ) 

      It is commonly known that field survey data is contaminated with a lot of noises or 

inaccuracies, resulting in data uncertainty. These uncertainties of the measured data can be 

handled by inserting a weighting matrix 𝑊 into the inversion algorithm. The data's weights are 

provided in its major diagonal with quantity commensurate to the degree of uncertainty.    
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Because of the weighting procedure, noisy data with large errors are incorporated into the 

inversion with less weight, which is extremely advantageous, especially when dealing with 

outliers. In that regard, the misfit between the measured and calculated data can be minimized 

in a weighted norm of the deviation vector as:  

E =   ∑ (𝑑𝑘 − ∑ 𝐺𝑘𝑖𝑀𝑖=1  𝑚𝑖)𝑁𝑘=1 ∑ 𝑊𝑘𝑠 (𝑑𝑠 − ∑ 𝐺𝑠𝑗𝑀𝑗=1  𝑚𝑗)𝑁𝑠=1 .                (22) 

      In a similar manner to the Gaussian Least Squares method, the derivatives concerning the 

model parameters using the property of 
𝜕𝐸𝜕𝑚𝑙 = 0 can be estimated as: ∑ 𝑚𝑗𝑀𝑗=1  ∑ 𝐺𝑘𝑙𝑁𝑘=1  ∑ 𝑊𝑠𝑘 𝐺𝑠𝑙𝑁𝑠=1  = ∑  𝐺𝑘𝑙𝑁𝑘=1  ∑ 𝑊𝑘𝑠 𝑑𝑠𝑁𝑠=1 ,                   (23) 

and in a vectorial form as: 𝐺𝑇 𝑊 𝐺 �⃑⃑� =  𝐺𝑇 𝑊 𝑑 .                                                  (24) 

      In that case, the weighted least-squares approach is solved using the generalized inverse 

matrix 𝐺−𝑔 = (𝐺𝑇  𝑊 𝐺)−1  𝐺𝑇 𝑊 to give the model vector as follows: �⃑⃑� =   𝐺−𝑔 𝑑 .                                                         (25) 

2.2.1.1.3. The Iteratively Reweighted Least Squares (IRLS) 

      The Iteratively Reweighted Least Squares (IRLS) can be considered as one of the most 

powerful optimization inversion methods based on solving the Lp approximation problem. In 

this method, the weighting matrix is recalculated iteratively over several steps. More 

importantly, by increasing the iterative procedures, the deviation between the measured and 

predicted data becomes lower and hence, the noisy datasets have less contribution in the linear 

inverse problem solution. The IRLS approach is effectively implemented to minimize the 

objective function of Lp norm as follows: 𝐸𝑝 = ∑ |𝑒𝑘|𝑝𝑁𝑘=1 = ∑ |𝑑𝑘 − ∑ 𝐺𝑘𝑖 𝑚𝑖𝑀𝑖=1 |𝑝𝑁𝑘=1 .                              (26) 

      Using 
∂E∂ml = 0, the above-mentioned formula is differentiated to the model parameters to get 

the derivatives as: ∑ mjMj=1  ∑ GkiNk=1  WkkGkl  =  ∑  GklNk=1  Wkkdk,                            (27) 

with the same vectorial form stated above in Eq. 24 as: 𝐺𝑇 𝑊 𝐺 �⃑⃑� =  𝐺𝑇 𝑊 𝑑 .                                                    (28) 
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      When 𝑝 equals to 2 in the first step of the IRLS method, the weights (Wkk) are assigned to 

an identity matrix (𝐼) resulting in the Gaussian least-squares model parameters vector as 

follows: �⃑⃑� (1) = (𝐺𝑇𝐺)−1  𝐺𝑇 𝑑 ,                                                (29) 

which is then used to estimate the deviation vector 𝑒𝑘(1) =  𝑑𝑘 − ∑ 𝐺𝑘𝑖𝑀𝑖=1   𝑚𝑖(1)
 and a 

weighting matrix 𝑊𝑘𝑘(1) = |𝑒𝑘|𝑝−2. In the second step, the model vector can be calculated as: 

�⃑⃑� (2) = (𝐺𝑇𝑊(1)𝐺)−1  𝐺𝑇 𝑊(1) 𝑑 .                                          (30) 

This process is continued over several 𝑞-th iteration steps according to the following equation: 𝐺𝑇𝑊(𝑞−1)𝐺 �⃑⃑� (𝑞) = 𝐺𝑇𝑊(𝑞−1) 𝑑 .                                        (31) 

      Furthermore, the method of Least Absolute Deviations (LAD) which depends mainly on 

the minimization of 𝐿1 norm (𝑝 = 1) numerically proceeds in most of the geophysical 

application problems (Scales et al. 1988). Although its wide extent of applicability, the Least 

Absolute Deviations method can practically give more accurate results only when the data is 

contaminated by a lesser number of major errors. 

2.2.1.2. Solution to the Inverse Problem with an Under-determination 

      Sometimes the field data measured in the field are not enough to give a clear comprehensive 

picture of the earth's subsurface geology. This situation causes an increase in the number of 

model parameters relative to the observed datasets (i.e. N < M) making the inverse problem to 

be under-determined (Aki and Richards, 1980; Menke, 1984; Tarantola, 1987 ). In this case, 

there are an infinite number of solutions to the inverse problem that satisfy the experimental 

data especially when the observations are contaminated with errors (Meju, 1994). Thus, several 

attempts are exerted to find a unique or most feasible solution among all equivalent ones, and 

therefore to overcome the ill-posed problem of underdetermination. One of these ways is to 

reduce the number of model parameters by discretizing the continuously earth's model into 

multiple separate ones, to achieve the desired goal of overdetermination. Moreover, this can be 

solved by adding some additional constraints or prior information to the problem that is 

introduced independently of the data d such as the previously studied geological, geophysical, 

and/or borehole data (Jackson, 1979). Mathematically, a solution to the under-determined 

inverse problem can be simply introduced by minimizing the objective function characterizing 
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the Euclidean norm of the model vector (𝐿 =  ‖�⃑⃑� ‖) together with the Lagrange multipliers 𝜆  
as follows: 𝐸 = 𝐿 + ∑ 𝜆𝑘𝑁𝑘=1 𝑒𝑘 = ∑ 𝑚𝑗2𝑀𝑗=1 + ∑ 𝜆𝑘𝑁𝑘=1  (𝑑𝑘 − ∑ 𝐺𝑘𝑖𝑀𝑖=1 𝑚𝑖),                 (32) 

where 𝜆𝑘 is the 𝑘-th multipliers. By applying 
𝜕𝐸𝜕𝑚𝑙 = 0, the model parameter estimates can be 

defined as: 𝑚𝑙 = 12  ∑ 𝜆𝑘𝑁𝑘=1  𝐺𝑘𝑙,                                                   (33) 

which is simplified in a vectorial form as: �⃑⃑� = 12  𝐺𝑇 𝜆 ,                                                        (34) 

this formula in conjunction with the data vector 𝑑 =  12   𝐺 𝐺𝑇 𝜆  can help drive the multipliers 

vector as follows: 𝜆 = 2 (𝐺 𝐺𝑇)−1  𝑑 ,                                                 (35) 

resulting in the following model vector as a solution to the under-determined inverse problem �⃑⃑� =  𝐺𝑇  (𝐺 𝐺𝑇)−1  𝑑 ,                                                (36) 

which can be simply written using the generalized inverse matrix  𝐺−𝑔 = (𝐺𝑇𝐺)−1  𝐺𝑇 as: �⃑⃑� =   𝐺−𝑔 𝑑 .                                                         (37) 

      Additionally, one of the most important aspects when dealing with the under-determined 

inverse problem is to improve the relationship between the model and data errors.  This can be 

effectively accomplished by providing extra constraints to the model space, such as the 

weighting matrix, like the over-determined inverse problem stated above. This is since we 

occasionally obtain valuable knowledge about some model parameters which should remain 

constant or do not change much during the inversion procedure, as opposed to other mysterious 

model parameters that must be varied or modified from the initial ones (Sen and Stoffa, 2013). 

Therefore, the weighted norm of the deviation vector is minimized, and a weighting matrix 𝑊 

is inserted to give a model vector �⃑⃑� = 12  𝐺𝑇 𝑊−1 𝜆  and multipliers vector 𝜆 =2 (𝐺  𝑊−1 𝐺𝑇)−1  𝑑  as driven before in Equations 34 and 35 respectively. This leads to 

estimating a simple solution to the under-determined inverse problem as follows: 
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�⃑⃑� =  𝑊−1 𝐺𝑇  (𝐺  𝑊−1 𝐺𝑇)−1  𝑑 ,                                         (38) 

which simplified using the generalized inverse matrix  𝐺−𝑔 = 𝑊−1 𝐺𝑇  (𝐺  𝑊−1 𝐺𝑇)−1
 to: �⃑⃑� =   𝐺−𝑔 𝑑 .                                                         (39) 

2.2.1.3. Solution to the Inverse Problem with a Mixed-determination 

      In fact, geophysicists are interested in measuring sufficient datasets during the field 

acquisition to fully understand the subsurface and achieve their objectives. This vast amount of 

data makes the inverse problem to be either over-determined or mixed-determined (Menke, 

1989). The mixed-determined inverse problem is based on the fact that there is no such inverse 

problem as being entirely over-determined or completely under-determined in the geophysical 

practice, but a combination of both components is found.  Due to the partial underdetermination, 

an infinite number of solutions to the inverse problem can be obtained.  On the other hand, 

some errors are yielded between the measured and calculated data due to the partial 

overdetermination and hence the deviation vector never equals zero. This situation can be 

effectively improved by maintaining the over-determined unknowns separate from the under-

determined unknowns and a new linearly combined set of the model parameters is constructed. 

In that case, the over-determined model parameters can be estimated with the help of the least-

squares strategy while identifying those with the minimum 𝐿2 solution length for under-

determination (Menke, 2018). In our investigation, a linearized method known as Damped 

Least Squares (DLSQ) or Levenberg-Marquardt is introduced as an efficient mixed-determined 

inversion procedure that relies primarily on 𝐿2 norm minimization. Using the minimized 

objective functions of the linear over-determined  and under-determined inverse problems in 

Equations 18 and 32 respectively, the combined objective function to be minimized in the 

mixed-determined case can be given as follows: ∅ = 𝐸 + 𝜀2 𝐿 =  ∑ (𝑑𝑘 − ∑ 𝐺𝑘𝑖𝑀𝑖=1  𝑚𝑖)𝑁𝑘=1 (𝑑𝑘 − ∑ 𝐺𝑘𝑗𝑀𝑗=1  𝑚𝑗) + 𝜀2  ∑ 𝑚𝑞2 𝑀𝑞=1 ,     (40) 

where ε2 is the damping or weighting factor. This factor is vitally pertinent in error detection 

as well as solution length thus, its value should be accurately selected while inserted in the 

inversion procedure. For instance, when a large value of ε is chosen, not only the under-

determined component is minimized but also a minimization of the over-determined 

components can be accompanied. This leads to solutions with unminimized error 𝐸 and hence, 

inaccurate estimations of the true model parameters are produced. On the other hand, if ε has a 

value of zero, the error can be minimized but unfortunately, the under-determined unknowns 

http://sepwww.stanford.edu/public/docs/sep88/paper_html/node100.html#menke
http://sepwww.stanford.edu/public/docs/sep88/paper_html/node100.html#menke
http://sepwww.stanford.edu/public/docs/sep88/paper_html/node100.html#menke
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can not be solved due to the lack of prior information. Therefore, a proper selection of ε can be 

accomplished by a further trial which grantee an approximate minimization of error 𝐸 and the 

solution's under-determined portion (Menke, 2018). By differentiating Eq. 40 in terms of the 

model parameters 
𝜕𝐸𝜕𝑚𝑙 = 0, the model parameter estimates can be defind as: ∑ 𝑚𝑖𝑀𝑖=1  (∑ 𝐺𝑘𝑖𝑁𝑘=1  𝐺𝑘𝑙 + 𝜀2𝐼) = ∑  𝑑𝑘 𝐺𝑘𝑙𝑁𝑘=1 ,                            (41)  

or in a vectorial form as follows: (𝐺𝑇𝐺 + 𝜀2 𝐼 ) �⃑⃑� =  𝐺𝑇 𝑑 ,                                                (42) 

where 𝐼  is the identity matrix. In that case, the generalized inverse matrix is introduced as 𝐺−𝑔 = (𝐺𝑇𝐺 + 𝜀2 𝐼 )−1  𝐺𝑇 to give a simple solution as: 

�⃑⃑� =   𝐺−𝑔 𝑑 .                                                         (43) 

      Similar to that applied in both over-determined and under-determined inverse problems, the 

weighted norm solution of the mixed-determined inverse problem by the least squares in data 

space gives the following model vector:  �⃑⃑� =  (𝐺𝑇 𝑊 𝐺 + 𝜀2 𝐼 )−1  𝐺𝑇 𝑊 𝑑 ,                                        (44) 

which can be simplified using the generalized inverse matrix 𝐺−𝑔 = (𝐺𝑇 𝑊 𝐺 + 𝜀2 𝐼 )−1  𝐺𝑇 𝑊 as: 

�⃑⃑� =   𝐺−𝑔 𝑑 .                                                         (45) 

2.2.1.4. Assessing the Inversion Procedure's Quality 

      Testing and evaluating the proposed inversion method on synthetic datasets before dealing 

with real field data measurements is an essential procedure of geophysical inversion practice. 

Therefore, the synthetic datasets generated for solving the geophysical problems are always 

contaminated with various quantities of noise to imitate field data. As a result, the influence of 

rising associated errors on model parameter estimation may be seen clearly. Thus, the 

calculation of the random noise and quantification of these estimation errors are of great 

importance in the practice of geophysical inversion. In that regard, several model acceptance 

criteria are commonly analyzed for assessing the reliability and goodness of the estimated 

inversion results. Using the 𝐿2 norm in data space, the misfit between the observed 𝑑𝑘(𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑)
 

http://sepwww.stanford.edu/public/docs/sep88/paper_html/node100.html#menke
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and calculated 𝑑𝑘(𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑)
 datasets can be quantified by the normalized data distance as 

follows: 

𝑑 =  √1𝑁  ∑ (𝑑𝑘(𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑)− 𝑑𝑘(𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑)𝑑𝑘(𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑) )2𝑁𝑘=1  ∗  100 (%),                          (46) 

where 𝑁 is the total number of inverted data. On the other hand, the relative model distance is 

established to numerically investigate the model parameters in synthetic inversions concerning 𝑖-th exactly known parameters 𝑚𝑖(𝑒𝑥𝑎𝑐𝑡)
 and computed ones 𝑚𝑖(𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑)

 as follows: 

𝐷 =   √1𝑀  ∑ (𝑚𝑖(𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑)− 𝑚𝑖(𝑒𝑥𝑎𝑐𝑡)𝑚𝑖(𝑒𝑥𝑎𝑐𝑡) )2𝑀𝑖=1  ∗  100 (%),                       (47) 

where 𝑀 is the total number of model parameters. Furthermore, a mathematical expression of 

a covariance matrix (Menke, 1984) to evaluate the quality of model parameter estimates can be 

introduced as:  𝐶𝑂𝑉 = 𝜎𝑑2  ( 𝐺𝑇𝐺 )−1
,                                                (48) 

where 𝜎𝑑2 is the variance in the data space. The variance of 𝑖-th model parameter is given by the 𝑖-th main diagonal elements of the model covariance matrix whilst others distributed outside 

the diagonal indicate the model parameters correlation strength which can be formulated by the 

following correlation matrix as: 

𝑐𝑜𝑟𝑟𝑖𝑗(𝑚) = 𝑐𝑜𝑣𝑖𝑗(𝑚)
√𝑐𝑜𝑣𝑖𝑖(𝑚) 𝑐𝑜𝑣𝑗𝑗(𝑚),                                           (49) 

with this model correlation matrix, the elements of its main diagonal are always equal to 1, 

whereas those on the outside diagonal range from -1 to +1. The best correlation coefficients can 

be estimated when their values range from 0 to ±0.5 and hence, a more stable and accurate 

solution to the inverse problem is presented. When these values are close to -1 or +1, the 

solution is said to be highly correlated. To overcome a large number of model correlation matrix 

elements, it can be enhanced as a single scalar known as the mean spread value (Menke, 1984; 

Salat et al, 1982) as follows:  

S = √ 1M (M−1)  ∑ ∑ ( CORRij − δij )2Mi=1Mj=1 ,                                   (50) 
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where δij is the Kronecker delta symbol. This scalar, which has a range of [0;+1], can also be 

used as a reasonable indicator of the inversion accuracy.  

2.3. THE ALGORITHM OF THE SERIES EXPANSION INVERSION PROCEDURE  

      The series expansion-based inversion method is considered to be one of the best 

achievements among several inversion approaches that developed in the last few decades by 

the Department of geophysics at the University of Miskolc. In the framework of the series 

expansion procedure, the expansion coefficients are established as the unknown model 

parameters. This inversion method is highly effective when the underlying geological structures 

to be investigated and interpreted are characterized by inhomogeneity, as defined by 

complicated lateral and/or vertical variations (Fancsik et al, 2021). To deal with the complexity 

of the earth's interior, it is preferable to discretize the subsurface into a large number of cells 

that are spread both laterally and vertically. Each cell attains a physical parameter giving a huge 

number of unknowns and therefore, the inverse problem to be solved becomes under-

determined. As previously stated, this situation necessitates providing extra constraints or prior 

information to the problem separate from the observational data. However, it is not always the 

optimal solution, especially if we deal with a pure under-determination inverse problem. 

Therefore, converting the inverse problem from under-determination to over-determination is 

of great importance in most geophysical applications in general and potential field theories in 

particular. In this regard, the series expansion is extremely advantageous as one of the most 

useful discretization processes since it enables us to reduce the unknowns of series expansion 

coefficients compared to those found at each data point. This means that the inverse problem 

turns to an easily solvable overdetermined one and hence, it is possible to get extremely high 

resolution and accuracy where the results are based mainly on the measured datasets. The series 

expansion-based discretization inversion method has been applied to solve a variety of 

geophysical problems such as gravitational (Dobroka and Volgyesi, 2008, 2010), magnetic data 

processing (Dobroka et al. 2015, 2017), magnetotelluric investigation (Dobroka et al. 2013), 

DC geoelectric (Gyulai et al, 2010, 2017), induced polarization (Turai et al. 2010; Turai and 

Dobroka, 2011), and borehole geophysics (Dobroka and Szabo 2010; Dobroka et al. 2016). 

      The algorithm of the series expansion-based discretization of the model parameters was 

handled by the Department of Geophysics at the University of Miskolc as follows: 𝑝(𝑥, 𝑦, 𝑧) =  ∑ ∑ ∑ 𝐵𝑙𝑁𝑧𝑘=1 𝛹𝑖𝑁𝑦𝑗=1 (𝑥)𝑁𝑥𝑖=1 𝛹𝑗(𝑦)𝛹𝑘(𝑧),                             (51) 
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where 𝛹1 …… 𝛹𝑁 are the chosen basis functions, 𝑁𝑥, 𝑁𝑦, 𝑁𝑧 are the series expansion limits, 

and 𝐵𝑙 are the series expansion coefficients ( yxx N*N*)1k(N*)1j(il  ). The 

stability of the inversion procedure is substantially influenced by the basis functions used. In 

that regard, great efforts have been exerted to enhance several types of basic functions such as 

power functions and Legendre polynomials which must be selected carefully to solve the 

prospective problem. Moreover, the series expansion coefficients 𝐵𝑙 of numbers 𝑀 = 𝑁𝑥 𝑁𝑦 𝑁𝑧 are the unknown model parameters to be determined as a solution to the 

overdetermined inverse problem. During the inversion process, these expansion coefficients are 

calculated iteratively, and new ones �⃑� 𝑛𝑒𝑤 =  �⃑� 𝑜𝑙𝑑 +  𝛿�⃑�  are generated at each step to obtain 

new theoretical data 𝑝𝑛𝑒𝑤(𝑥, 𝑦, 𝑧). This method allows us to estimate successfully the model 

unknown values in the half-space introduced by the finite difference (FDM) algorithm without 

incurring any concessions in the precision of the forward problem. 

      The ambiguity or instability of the over-determined series expansion-based inversion can 

be extremely avoided when a priori information about the area under exploration is provided.  

The most important factor is the subsurface geological structure such as layering which aids in 

reducing the number of inverse problem unknowns. So, we introduce some of the homogeneous 

and inhomogeneous structural models that have a great influence on series expansion-based 

inversion.  In the first case when a 𝑞-th layer interface involved in a 3D homogeneous model 

geometry is represented, the series expansion discretization can be defined as: 

𝑧 =  𝑓𝑞(𝑥, 𝑦) =  ∑ ∑ 𝐶𝑙(𝑞)𝛹𝑖𝑁𝑦(𝑞)𝑗=1 (𝑥)𝑁𝑥(𝑞)𝑖=1 𝛹𝑗(𝑦),                                 (52) 

the number of  unknown expansion coefficients 𝐶𝑙(𝑞)
 is given as 𝑁𝑥(𝑞)𝑁𝑦(𝑞)

 which can be written 

in 𝑝 layered model case assuming one physical parameter per layer with the total number of 

model parameters: 𝑀 = ∑ 𝑁𝑥(𝑞) 𝑁𝑦(𝑞)𝑝𝑞=1 + 𝑝 + 1.                                             (53) 

      On the other hand, when we have a vertically inhomogeneous layered model, the physical 

parameters of the 𝑞-th are defined as follows: 

𝑝𝑞(𝑧) =  ∑ 𝐷𝑙(𝑞)𝑁𝑞(𝑝)𝑖=1 𝛹𝑖(𝑧),                                                 (54) 

with the number of unknowns provided as: 𝑀 = ∑ (𝑁𝑥(𝑞) 𝑁𝑦(𝑞) + 𝑁𝑞(𝑝))𝑝𝑞=1 + 1,                                       (55) 
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where 𝑙 =  𝐿𝑞 + 𝑖. Hence, a homogeneous half-space is found with 𝐿𝑞 representing an initial 

index in the 𝑞-th layer. Furthermore, the discretized physical parameters through series 

expansion are introduced in the context of a laterally inhomogeneous model in the 𝑞-th layer 

as: 

𝑝𝑞(𝑥, 𝑦) =  ∑ ∑ 𝐷𝑙(𝑞)𝛹𝑖𝑁𝑝,𝑦(𝑞)𝑗=1 (𝑥)𝑁𝑝,𝑥(𝑞)𝑖=1 𝛹𝑗(𝑦),                                  (56) 

where 𝑙 =  𝐿𝑞 + 𝑖 + (𝑗 − 1) 𝑁𝑥. The number of unknown expansion coefficients in the 𝑝 

layered model case is given as: 𝑀 = ∑ (𝑁𝑥(𝑞) 𝑁𝑦(𝑞) + 𝑁𝑝,𝑥(𝑞) 𝑁𝑝,𝑦(𝑞))𝑝𝑞=1 + 1.                                 (57) 

      Finally, when we have an inhomogeneous layered model that varies both vertically and 

laterally, the physical parameters can be expressed using a series expansion in the following 

way:  

𝑝𝑞(𝑥, 𝑦, 𝑧) =  ∑ ∑ ∑ 𝐵𝑙(𝑞)𝑁𝑝,𝑧(𝑞)𝑘=1 𝛹𝑖𝑁𝑝,𝑦(𝑞)𝑗=1 (𝑥)𝑁𝑝,𝑥(𝑞)𝑖=1 𝛹𝑗(𝑦)𝛹𝑘(𝑧),                         (58) 

where 𝑙 =  𝐿𝑞 + 𝑖 + (𝑗 − 1) 𝑁𝑝,𝑥(𝑞)  +  (𝑘 − 1) 𝑁𝑝,𝑥(𝑞) 𝑁𝑝,𝑦(𝑞)
. In that case, the number of unknowns 

for 𝑝 layered model is expressed as: 𝑀 = ∑ (𝑁𝑥(𝑞) 𝑁𝑦(𝑞) + 𝑁𝑝,𝑥(𝑞) 𝑁𝑝,𝑦(𝑞)  𝑁𝑝,𝑦(𝑞))𝑝𝑞=1 + 1.                               (59) 

      In all of the above-mentioned circumstances, the number of data is higher than the number 

of unknowns (𝑁 > 𝑀), whether homogeneous or inhomogeneous structural models, implying 

that the inverse problem is usually over-determined. This prompts us to provide the proposed 

inversion algorithm of series expansion with a priori information bearing in mind the incredible 

performance of inversion in computing procedures, particularly when using finite difference 

(FDM) or finite element (FEM) methods. 

2.4. THE INVERSION-BASED FOURIER TRANSFORMATION 

      As discussed above in chapter 1, we introduce the inversion-based Fourier transformation 

(IRLS-FT) algorithm as an effective approach for geophysical data processing. This procedure 

evaluates noise reduction capabilities and determines the most likely quality of observed data 

that has been contaminated by complicated noises such as outliers. In this inversion-based 

filtering, the series expansion-based Fourier transformation is considered as the weighted 

inverse problem using the weights calculated in the framework of Steiner’s Most Frequent 
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Value (MFV) method (Steiner, 1988 and 1997). Moreover, the Hermite functions are employed 

as basis functions, together with the eigenfunctions' advantage characteristic that allows us to 

speed up the calculation of the Jacobian matrix elements. In the following section, 1D and 2D 

algorithms of the IRLS Fourier Transformation (Dobróka et al. 2015, 2017), as well as the IRLS 

inversion methodology are presented. 

2.4.1. 1D ALGORITHM OF THE IRLS FOURIER TRANSFORMATION 

      In the framework of signal processing and interpretation enhancing methods, the Fourier 

transformation algorithm can be performed to drive the data in frequency from time-domain 

datasets, and therefore, one can get the most important features of interest. The Fourier 

transformation in a one-dimensional case can be expressed as follows: 𝑈(𝜔)  =  1√2𝜋  ∫ 𝑢(𝑡) 𝑒−𝑗𝜔𝑡∞−∞  𝑑𝑡,                                           (60) 

where 𝑈 (𝜔) is the Fourier spectrum that converted from a phenomenon carried by some time-

domain observations 𝑢(𝑡), 𝜔 and 𝑗 are the angular frequency and imaginary unit respectively. 

On the other hand, a time-domain signal is established using an inverse Fourier transformation 

as:  𝑢(𝑡)  =  1√2𝜋  ∫ 𝑈(𝜔) 𝑒𝑗𝜔𝑡∞−∞  𝑑𝜔.                                           (61) 

      To facilitate the procedures of data processing and interpretation, we use the series 

expansion method to discretize the continuous Fourier frequency spectrum 𝑈 (𝜔) as follows: 𝑈(𝜔)  =  ∑ 𝐵𝑖 𝛹𝑖𝑀𝑖=1 (𝜔),                                              (62) 

where 𝐵𝑖 represents the expansion coefficients that are calculated as the solution of the 

overdetermined inverse problem and 𝛹𝑖  (𝜔) are the chosen basis functions. Inserting Eq. 62 

into Eq. 61, one can estimate the theoretical data as shown in the following formula: 𝑢𝑘𝑡ℎ𝑒𝑜𝑟 = ∑ 𝐵𝑖𝑀𝑖=1  1√2𝜋  ∫ 𝛹𝑖  (𝜔)∞−∞ 𝑒𝑗𝜔𝑡𝑘  𝑑𝜔,                              (63) 

where the following term 1√2𝜋  ∫ 𝛹𝑖  (𝜔)∞−∞ 𝑒𝑗𝜔𝑡𝑘  𝑑𝜔,   

is a component of the NxM Jacobian matrix 𝐺𝑘,𝑖 (that consists of 𝑁 elements of time-domain 

data and 𝑀 elements of unknown expansion coefficients). It is highly significant to take in mind 

that the Jacobian matrix can be considered as the inverse Fourier transform of the basis function 𝛹𝑖 and hence, the theoretical data can be summarized as:  
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𝑢𝑘𝑡ℎ𝑒𝑜𝑟 = ∑ 𝐵𝑖𝑀𝑖=1  𝐺𝑘,𝑖.                                                 (64) 

      Because the frequency spectrum is given as an integral in the interval (-∞,∞), the basis 

functions should be given in the same domain, which can be achieved by using the Hermite 

functions and polynomials. The mathematical background of the Hermite polynomials was 

established by Laplace (1812) and further refined by Hermite (1864) to incorporate 

multidimensional polynomials. Since the frequency covers such a wide range in most of all 

geophysical applications, scaling has a vital role in modifying the Hermite functions executed. 

In that regard, the scaled Hermite functions of the inverse Fourier transformation can be defined 

as: 

𝐻𝑛(𝜔, 𝛼)  =  𝑒−𝛼𝜔22  ℎ𝑛(𝜔,𝛼)
√√𝜋𝛼 𝑛! (2𝛼)𝑛            where  ℎ𝑛(𝜔, 𝛼)  =  (−1)𝑛 𝑒𝛼𝜔2   ( 𝑑𝑑𝜔)𝑛  𝑒−𝛼𝜔2

,      (65) 

where 𝛼 is the scale factor. To find a speedy solution to the forward problem, Dobróka et al. 

(2017) employed the nonscaled Hermite function 𝐻𝑛(0)
 as eigenfunction of the inverse Fourier 

transformation as follows:  𝐺𝑘𝑛  =  1√𝛼4  (𝑗)𝑛 𝐻𝑛(0)  ( 𝑡√𝛼).                                              (66) 

      It can be seen that the Jacobian matrix does not seem to involve integration, which makes 

the inversion procedures faster and less time-consuming. It is obvious that the easy computation 

of the Jacobian matrix elements enables us to produce theoretical data in a linear form as 

introduced in Eq. 63. In this case, the general element of the deviation vector can be expressed 

as: 𝑒𝑠 = 𝑢𝑠𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − ∑ 𝐵𝑖𝑀𝑖=1  𝐺𝑘,𝑖.                                            (67) 

By calculating the deviation vector, the inverse problem can be continued straightforwardly. 

2.4.2. 2D ALGORITHM OF THE IRLS FOURIER TRANSFORMATION 

      The two-dimensional algorithm of the inversion-based Fourier transformation (2D IRLS-

FT) can subsequently be driven in the same way as the previously stated one-dimensional 

inversion. The 2D Fourier transformation algorithm is used to convert the data from the space 

domain to the spatial frequency domain as follows: 𝑈 (𝜔𝑥, 𝜔𝑦) = 
12𝜋 ∫ ∫ 𝑢 (𝑥, 𝑦)∞−∞∞−∞  𝑒−𝑗(𝜔𝑥𝑥+𝜔𝑦𝑦) 𝑑𝑥 𝑑𝑦,                         (68) 

while the 2D space domain data can be acquired through its inverse as: 
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   𝑢 (𝑥, 𝑦) = 
12𝜋 ∫ ∫ 𝑈 (𝜔𝑥, 𝜔𝑦)∞−∞∞−∞  𝑒𝑗(𝜔𝑥𝑥+𝜔𝑦𝑦) 𝑑𝜔𝑥 𝑑𝜔𝑦.                      (69) 

      The angular spatial frequencies of the 2D spatial frequency spectrum are denoted by ⍵𝑥 

and ⍵𝑦, whereas 𝑥 and 𝑦 are the spatial coordinates. Furthermore, the continuous 2D Fourier 

transform 𝑈 (𝜔𝑥, 𝜔𝑦) is discretized utilizing the series expansion method as follows: 𝑈 (𝜔𝑥, 𝜔𝑦) = ∑ ∑ 𝐵𝑛,𝑚 𝛹𝑛,𝑚 (𝜔𝑥, 𝜔𝑦)𝑀𝑚=1𝑁𝑛=1 .                                  (70) 

      The model parameters of the over-determined inverse problem are calculated as expansion 

coefficients 𝐵𝑛,𝑚, whilst the appropriately chosen basis functions are 𝛹𝑛,𝑚 (𝜔𝑥, 𝜔𝑦). In our 

linear inversion procedure, the Jacobian matrix needed for theoretical data calculations can be 

thought of as the inverse Fourier transform of the basis function as: 𝐺𝑘,𝑙𝑛,𝑚 = 12𝜋 ∫ ∫  ∞−∞ 𝛹𝑛,𝑚 (𝜔𝑥, 𝜔𝑦)∞−∞ 𝑒𝑗(𝜔𝑥𝑥+𝜔𝑦𝑦) 𝑑𝜔𝑥 𝑑𝜔𝑦,                   (71) 

where 𝑘 = 1,2, … , 𝐾  and 𝑙 = 1,2, … , 𝐿 refer to the x and y coordinates of the measurement 

points. At this stage, Hermite functions and polynomials are used to supply the basis functions 

with the same domain of the integral's interval (-∞,∞) of the frequency spectrum. Similar to that 

illustrated above in the 1D inversion algorithm case, the following two equations describe the 

two-dimensional scaled Hermite functions using scale factors 𝛼 and 𝛽 as follows: 

𝐻𝑛(𝜔𝑥, 𝛼) = 
𝑒−𝛼𝜔𝑥22  ℎ𝑛(𝜔𝑥,𝛼)
√√𝜋𝛼 𝑛! (2𝛼)𝑛         where  ℎ𝑛(𝜔𝑥, 𝛼) = (−1)𝑛 𝑒𝛼 𝜔𝑥2 ( 𝑑𝑑𝜔𝑥)𝑛

 𝑒−𝛼 𝜔𝑥2           (72) 

 

𝐻𝑚(𝜔𝑦, 𝛽) = 
𝑒−𝛽𝜔𝑦22  ℎ𝑚(𝜔𝑦,𝛽)
√√𝜋𝛽 𝑚! (2𝛽)𝑚         where  ℎ𝑚(𝜔𝑦, 𝛽) = (−1)𝑚 𝑒𝛽 𝜔𝑦2 ( 𝑑𝑑𝜔𝑦)𝑚

 𝑒−𝛽 𝜔𝑦2.      (73) 

      On the other hand, non-scaled Hermite functions 𝐻𝑛(0)
and 𝐻𝑚(0)

 are inserted as 

eigenfunctions of the inverse Fourier transformation by Dobróka et al (2017) to fasten the 

forward problem solution as follows: 𝐺𝑘,𝑙𝑛,𝑚
 = 

(𝑗)𝑛+𝑚√𝛼𝛽4  𝐻𝑛(0)  (𝑥𝑘√𝛼) 𝐻𝑚(0)  ( 𝑦𝑙√𝛽).                                          (74) 

In this case, the theoretical data at a given measuring point (𝑥𝑘, 𝑦𝑙) can be expressed as: 𝑢 (𝑥𝑘, 𝑦𝑙)𝑡ℎ𝑒𝑜𝑟 = ∑ ∑ 𝐵𝑛,𝑚 𝐺𝑘,𝑙𝑛,𝑚𝑀𝑚=1𝑁𝑛=1 ,                                       (75) 
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which can be simply reformulated using the notations 𝑢 (𝑥𝑘 , 𝑦𝑙) =  𝑢𝑠, 𝐵𝑛,𝑚 = 𝐵𝑖 and 𝑢𝑠 = ∑ 𝐵𝑖 𝐺𝑠,𝑖𝐼𝑖=1  as: 𝑢𝑠𝑡ℎ𝑒𝑜𝑟 = ∑ 𝐵𝑖 𝐺𝑠,𝑖𝐼𝑖=1 ,                                                       (76) 

where 𝑖 = 1,… , 𝐼 and 𝑠 = 1, … , 𝑆 = 𝐾𝐿 and hence, the inverse problem can be 

straightforwardly solved by minimizing a proper norm of the deviation vector's general element 

as:  𝑒𝑠 = 𝑢𝑠𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − ∑ 𝐵𝑖 𝐺𝑠,𝑖𝐼𝑖=1 .                                                 (77) 

2.4.3. THE IRLS INVERSION METHODOLOGY 

      As a method of linearized geophysical inversion, the least-squares method can be used to 

solve sets of linear equations for quick procedures. Legendre (1805) was the first to publish a 

clear and concise exposition of the least-squares method. It is well known that the least-squares 

inversion method is more effective when dealing with data of Gaussian noise (regular noise). It 

can be used to evaluate the misfit between the measured and predicted data by minimizing the 𝐿2 norm of the deviation vector as follows: 𝐸2 = ∑ 𝑒𝑘2𝑁𝑘=1 ,                                                           (78) 

giving the minimized normal equations as: 𝐺𝑇 𝐺  �⃑�  =  𝐺𝑇  �⃑� 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑.                                              (79) 

      Because most geophysical data measured during field surveys contain varying levels of 

irregular noise, such as outliers, the deviation vector of another norm called the weighted norm 

is minimized like the following: 𝐸𝑤 = ∑ 𝑤𝑘 𝑒𝑘2𝑁𝑘=1 .                                                         (80) 

      Employing Cauchy weights 𝑤𝑘 improves the stability and robustness of the inversion 

procedures, and it can be expressed as: 𝑤𝑘 = 𝜎2𝜎2+ 𝑒𝑘2 ,                                                              (81) 

where 𝜎2 is the scale parameter, the value of which must be known as an a priori provided 

quantity for the inversion process to continue. As a result, the most frequent value (MFV) 

approach of Steiner must be employed to solve this problem, with the Cauchy-Steiner weights 

being estimated (Steiner, 1997) as follows: 

https://en.wikipedia.org/wiki/Adrien-Marie_Legendre
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𝑤𝑘 = 𝜀2𝜀2+ 𝑒𝑘2 ,                                                            (82) 

where 𝜀2 is the dihesion that can be computed iteratively through an internal loop as: 

𝜀𝑗+12 = 3 ∑ 𝑒𝑘2(𝜀𝑗2+ 𝑒𝑘2)2𝑁𝑘=1
∑ ( 1𝜀𝑗2+ 𝑒𝑠2)2𝑁𝑠=1  .                                                     (83) 

      It is obvious that at the starting step (𝑗 = 0), the Steiner scale factor 𝜀0 ≤ √32  (𝑒𝑚𝑎𝑥 − 𝑒𝑚𝑖𝑛) 

can be used to calculate the Steiner scale factor of the next step 𝜀𝑗+12  and this process continues 

until the stop-criterion is met, which can be also achieved by using a fixed iteration number. At 

this stage, the inverse problem has become nonlinear because of using the Cauchy-Steiner 

weights, thus the iteratively reweighted least-squares (IRLS) method (Scales et al, 1988) must 

be used. In this inversion procedure, the predicted data at the 0th step can be calculated using 

the expansion coefficients �⃑� (0) which derived from the non-weighted least-squares method 𝑢𝑘(0) = ∑ 𝐵𝑖(0) 𝐺𝑘𝑖𝑀𝑖=1 . Then the deviation vector can be computed from 𝑒𝑘(0) = 𝑢𝑘𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑢𝑘(0)
 yielding the following weights: 𝑤𝑘(0) = 𝜀2𝜀2+ (𝑒𝑘(0))2 .                                                      (84) 

      Now the misfit between the measured and calculated data can be determined at the first 

iteration step as the following: 𝐸𝑤(1)  =  ∑ 𝑤𝑘(0) 𝑒𝑘(1)2𝑁𝑘=1 ,                                                (85) 

which is minimized to give linear normalized equations as: 𝐺𝑇 𝑊(0) 𝐺   �⃑� (1)  =  𝐺𝑇 𝑊(0) �⃑� 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑,                                  (86) 

where 𝑊(0) is the weighting matrix. It can be seen that the expansion coefficients at the 1st 

iteration step �⃑� (1) calculated from the above equation of the linear weighted least-squares 

method are subsequently used to estimate new predicted data 𝑢𝑘(1) = ∑ 𝐵𝑖(1) 𝐺𝑘𝑖𝑀𝑖=1 , and hence, 

the deviation vector is 𝑒𝑘(1) = 𝑢𝑘𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑢𝑘(1)
. Similarly, the weights 𝑤𝑘(1) = 𝜀2𝜀2+ (𝑒𝑘(1))2 are 

calculated to compute the new misfit function 𝐸𝑤(2)
= ∑ 𝑤𝑘(1) 𝑒𝑘(2)2𝑁𝑘=1  resulting in �⃑� (2) through 
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its minimization. This process is continued and repeated over the 𝑗-th iteration step as shown in 

the normal equation: 𝐺𝑇 𝑊(j−1) 𝐺   �⃑� (j)  =  𝐺𝑇 𝑊(j−1) �⃑� 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑,                                  (87) 

until a stop criterion is met at the last iteration step and therefore, the series expansion 

coefficients are accepted as a solution of the inverse problem. 
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Chapter 3 

NUMERICAL INVESTIGATION OF THE INVERSION-BASED 1D FOURIER 

TRANSFORMATION 

 

      The application of the Fourier transform is beneficial in most physical sciences, including 

engineering, physics, chemistry, and applied mathematics. Therefore, we introduce the 

inversion-based Fourier transformation in our study as a robust and reliable methodology for 

improving the processing and interpretation of geophysical datasets. Before moving on to two-

dimensional datasets, this chapter discusses in brief several benefits of the inversion method 

applied to one-dimensional datasets such as noise reduction capabilities, non-regular sampling 

problems as well as a new promising direction for datasets sampled incompletely within the 

area under investigation. 

3.1. TESTING THE NOISE REDUCTION CAPABILITIES     

      One of the most serious issues is geophysical datasets that have been corrupted with various 

amounts of noise during the field survey. This noise prevalence must be taken into account 

before dealing with the different techniques of data processing and interpretation. Thus, putting 

our inversion-based Fourier transformation approach to the test to see if we can improve the 

quality of geophysical signal outputs is a key topic of interest. 

3.1.1. REDUCING OUTLIER SENSITIVITY IN IRLS-FT    

      In this section, we shed the light on the comparison between the traditional Fourier 

transformation DFT and the inversion-based Fourier transformation IRLS-FT for outlier 

sensitivity rejection when applied to 1D equidistantly sampled datasets. Furthermore, the 

algorithm of the one-dimensional inversion-based Fourier transformation (S-IRLS-FT) method 

was handled by the Department of Geophysics, University of Miskolc, which was followed by 

some PhD students, as seen in Daniel Oduro Boatey Nuamah's and Hajnalka Szegedi's PhD 

dissertations. In addition, this work has been already studied in many kinds of literature 

(Dobroka et al, 2012; Szegedi and Dobróka, 2014; Dobroka et al, 2015; Nuamah and Dobróka, 

2019; Nuamah et al, 2021), therefore, in this thesis, we briefly present the signal processing 

applicability of the inversion-based Fourier transformation to 1D datasets. In that regard, a 

regular sampling interval of ∆𝑡 = 0.005 sec was chosen to create a time-domain signal over 

401 measuring points in a tested area covering a time range of [-1 to +1] as shown in Figure 2. 

This Morlet wavelet is generated using the following formula: 
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𝑢(𝑡) = 𝑘 𝑡𝜂  𝑒−λ𝑡 𝑠𝑖𝑛(𝜇𝑡 +  ∅),                                           (88) 

with a given time 𝑡 and signal parameters input values 𝑘 = 738.91, 𝜂 = 2, λ = 20, 𝜇 = 40𝜋, 

and ∅ =  𝜋 4⁄ .  

 

Figure 2. Noise-free wavelet in the time domain. 

      In this case of equidistantly sampled noise-free datasets, the time-domain signal is 

converted to a frequency domain to give the real and imaginary components of the Fourier 

frequency spectrum by the traditional (DFT) and inversion (IRLS) methods as clearly seen in 

Figure 3a and Figure 3b respectively. It is demonstrated that both converted spectra are shown 

to have identical shapes and amplitudes, proving that the two techniques are very applicable to 

noise-free datasets.  

 

Figure 3. a) DFT spectrum of the Noise-free signal in the frequency domain, b) IRLS-FT 

spectrum of the Noise-free signal in the frequency domain. 
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      To assess the noise reduction capacity of both DFT and S-IRLS-FT methods, this noise-

free wavelet is contaminated with both Gaussian noise using zero mean and standard deviation 𝜎 = 0.01 (Figure 4a) and a random noise of Cauchy distribution to imitate real field data 

measurements (Figure 4b). 

 

Figure 4. a) Gaussian noise-contaminated wavelet in the time-domain, b) Cauchy noise-

contaminated wavelet in the time-domain. 

      On the other hand, to compare the inversion method's applicability to that of noise-free 

datasets, the noisy signal containing Gaussian noise (Figure 4a) is subjected to the Fourier 

transformation yielding in 1D noisy frequency spectra by DFT and inversion-based (IRLS) 

methods as introduced in Figure 5a and Figure 5b respectively. In addition, Figure 6a and 

Figure 6b represent the 1D noisy Fourier frequency spectra obtained by applying the DFT and 

inversion method to the Cauchy noise-contaminated data respectively. It is noticed that the one-

dimensional noisy frequency spectra produced by the inversion method either with Gaussian or 

Cauchy noises are highly enhanced and improved compared to those found by the traditional 

DFT method to be nearly similar to that of the noise-free Fourier spectrum (Figure 3a) 

reflecting the professional noise rejection capability of the inversion used. 
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Figure 5. a) DFT spectrum of the Gaussian noise-contaminated signal in the frequency 

domain, b) IRLS-FT spectrum of the Gaussian noise-contaminated signal in the frequency 

domain. 

 

Figure 6. a) DFT spectrum of the Cauchy noise-contaminated signal in the frequency 

domain, b) IRLS-FT spectrum of the Cauchy noise-contaminated signal in the frequency 

domain. 

      For quantitative interpretation, the output signals can be evaluated mathematically by 

calculating the misfit between the noisy and noise-free datasets. In the context of the time-

domain, the data distance assessed for the noiseless and noisy signals may therefore be as 

follows: 
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𝑑 =  √1𝑁  ∑ [𝑢𝑛𝑜𝑖𝑠𝑒𝑙𝑒𝑠𝑠(𝑡𝑖) − 𝑢𝑛𝑜𝑖𝑠𝑦(𝑡𝑖)]2𝑁𝑖=1 ,                                   (89) 

while for the frequency domain accuracy, the model distance between the spectra can be 

expressed as: 𝐷 =  [1𝑀  ∑ (𝑅𝑒[𝑈𝑛𝑜𝑖𝑠𝑦(𝑓𝑖)] −  𝑅𝑒[𝑈𝑛𝑜𝑖𝑠𝑒𝑙𝑒𝑠𝑠(𝑓𝑖)])2𝑀𝑖=1 + 1𝑀  ∑ (𝐼𝑚[𝑈𝑛𝑜𝑖𝑠𝑦(𝑓𝑖)] −𝑀𝑖=1 𝐼𝑚[𝑈𝑛𝑜𝑖𝑠𝑒𝑙𝑒𝑠𝑠(𝑓𝑖)])2]12
,                                                                                  (90) 

where 𝑁 and 𝑀 are the associated numbers of the examination area's time and frequency points. 

In this case, the data distance calculated between the noise-free (Figure 2) and Gaussian noise-

contaminated data (Figure 4a) is 0.1032, whilst for Cauchy noise (Figure 4b) is 0.4554. 

Moreover, in the case of Gaussian noise, the model distances between the noise-free (Figure 

3a) and noisy spectra produced by the DFT (Figure 5a) and the inversion-based IRLS-FT 

(Figure 5b) are numerically computed as 0.0041 and 0.0027 respectively. However, the 

noiseless spectrum (Figure 3a) and the spectrum-based Cauchy noise obtained by the DFT 

method  (Figure 6a) are separated by a model distance of D= 0.0182, whereas the estimated 

value for that produced by the inversion (IRLS-FT) method (Figure 6b) has a model distance 

of D= 0.0021. According to these RMS distance values as well as the resolution of signals in 

both time and frequency domains, one can prove that the inversion-based 1D Fourier 

transformation is extremely effective, efficient, and gives sufficient improvements in noise 

reduction compared to the conventional Fourier transformation method (DFT) especially when 

we deal with outliers of Cauchy noise-contaminated data. 

3.2. TESTING THE NON-REGULAR SAMPLING PROBLEM 

      The problem of non-regular sampling may be accompanied during the procedures of the 

field data acquisition due to some restrictions encountered in the investigated area, such as the 

presence of unpaved roads or any natural or artificial conditions. This was a great motivation 

to implement the proposed inversion-based Fourier transformation (IRLS-FT) method on data 

sampled non-regularly as previously discussed by Nuamah and Dobróka (2019). In this section, 

we present an application of the inversion method to two different strategies of one-dimensional 

non-regularly sampled datasets; the first is when complete data are randomly selected while the 

other is concerned with the random walk measurement positioning. 
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3.2.1. COMPLETE DATASET WITH RANDOM MEASUREMENT LOCATIONS  

      The above-mentioned 1D equidistantly dataset, sampled over 401 measuring points in an 

interval of [-1 to +1], can then be used to create the random measurement placement scenario. 

In that regard, a random selection of the observing points is constructed by means of 

randomizing their interval length. In this investigation, two times the half sampling distance 

around the exact or non-shifted position is presented. Figure 7 depicts a plot of randomly 

sampled measuring points on a non-regular grid. 

 

Figure 7. Plot of randomly sampled measuring points. 

      It can be seen that the sampling points deviate from the straight line due to the randomizing 

procedure and the resultant Morlet wavelet in the time domain can be displayed in Figure 8. 

 

Figure 8. Non-regular sampling wavelet in the time domain. 

      The inversion algorithm is applied to the above-mentioned time-domain signal to verify the 

effectiveness and accuracy of the inversion-based 1D Fourier transformation (IRLS-FT) 
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method. This results in the real and imaginary parts of the Fourier frequency spectrum for 1D 

datasets sampled non-equidistantly as demonstrated in Figure 9.  

 

Figure 9. IRLS-FT spectrum of the non-regular signal in the frequency domain. 

      It is observed that the Fourier frequency spectrum based on non-regular sampling datasets 

has similar shapes and amplitudes when compared to those obtained in the regular sampling 

case using either the conventional DFT (Figure 3a) or inversion-based (IRLS) (Figure 3b) 

methods. The inversion method's efficiency is further emphasized by the results of the 1D 

inverse Fourier transformation, in which the above frequency-domain spectrum is transformed 

into a calculated wavelet in the time domain (Figure 10).   

 

Figure 10. The calculated wavelet by IRLS-FT in the time domain. 

      It is seen that the calculated time-domain signal is nearly identical to that generated for the 

1D equidistant case (Figure 2), proving great enhancements by the inversion method. 

Numerically, the calculated data distance between the wavelet-based inversion (Figure 10) and 

the non-regular time-domain signal (Figure 8) demonstrates a very low value of 0.0033. These 

results reveal that the inversion-based Fourier transformation is highly effective in both time 
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and frequency domains when dealing with random measurement positioning of complete 

datasets. 

3.2.2. COMPLETE DATASET WITH RANDOM-WALK MEASUREMENT POSITIONS  

      Random walk measurements that are carried out over non-equidistant grids are frequently 

proceeded in most geophysical field data acquisition due to a variety of natural or man-made 

impediments, such as caves, road accessibility, buildings, and so on. Furthermore, the great 

developments in the geophysical survey’s equipment over the last few decades have encouraged 

many geophysicists to measure datasets at random locations in the field and therefore, help 

them save time and effort during field data gathering. As a result, our objective is to show how 

effective can the inversion-based Fourier transformation (IRLS-FT) deal with the random walk 

measurements in one-dimension (Nuamah and Dobróka, 2019). On behave of this random walk 

sampling, the above-mentioned Morlet wavelet-based 1D complete equidistant datasets that are 

initially created,  across 401 measuring points in an interval of [-1 to +1], are further randomized 

to produce non-equidistant intervals. Figure 11 shows the grid of non-equidistantly sampled 

measuring stations in one dimension. 

 

 

Figure 11. The randomized measuring points that required for non-equidistant wavelet 

generation. 

 

      The randomly selected sampling points are then subjected to the algorithm of the inversion-

based 1D Fourier transformation to give a one-dimensional Fourier frequency spectrum as 

clearly shown in Figure 12. 
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Figure 12. IRLS-FT spectrum of the randomly sampled signal in the frequency domain. 

      One can notice that the 1D frequency spectrum of the non-equidistantly sampled signal by 

the inversion method demonstrates sufficient improvements. The shapes and amplitudes of both 

real and imaginary parts of the IRLS spectrum are very similar to that obtained by the traditional 

Fourier transformation approach (DFT-FT) in an equidistantly sampling case (Figure 3a). 

Moreover, a wavelet in the time-domain is converted by means of the 1D inverse Fourier 

transformation to confirm the inversion’s efficiency as seen in Figure 13. 

 

Figure 13. The calculated wavelet of the randomly sampled datasets by IRLS-FT in the time 

domain. 

      A close examination of the inverted time-domain signal shows a considerable similarity 

when compared to the signal generated for the 1D equidistant case (Figure 2) with numerical 

data distance value of 0.0029.  Accordingly, it can be said that the 1D inversion-based Fourier 

transformation (IRLS-FT) method is effective, robust, and extremely applicable for processing 

1D complete datasets gathered in non-equidistant or random walk measurement configurations. 
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3.3. TESTING THE INCOMPLETE SAMPLING PROBLEM 

      In geosciences, most of the natural phenomena of the earth’s interior are commonly 

analyzed through field datasets measuring rather than laboratory experiments. Depending on 

the conditions whereby the measurements are taken, the vast majority of these datasets are 

generally riddled with gaps. Therefore, challenges in a variety of disciplines, such as spectrum 

estimation and defining boundary conditions for numerical models can be caused by this 

incomplete or missing data (Kondrashov and Ghil, 2006). In a common geophysical modeling 

protocol, data processing can be provided by missing input variables of the measurements being 

disregarded, even if it's just one of the independent variables. But this situation does not 

guarantee the optimum solution where the model testing or construction is enhanced in the 

absence of these incomplete or missing data raws, and therefore, a lot of most likely information 

could, unfortunately, be lost (Gill et al, 2007). All of these factors are compelling enough to 

make our interest mainly directed to thinking about how we can treat this kind of missing 

dataset. In that regard, we develop a new MATLAB code that applies the inversion-based 

Fourier transformation (IRLS-FT) approach to incomplete synthetic datasets sampled both 

equidistantly and non-equidistantly in one dimension. In reality, this research point is highly 

promising especially in geophysics since the majority of geophysical datasets are inhabited by 

different degrees of incomplete or missing values. 

3.3.1. INCOMPLETE DATASET WITH REGULAR SAMPLING 

      In this section, the newly developed algorithm of the inversion-based 1D Fourier 

transformation method is implemented to test its effectiveness when some observing points in 

the regularly sampled datasets are neglected or cancelled. To do so, the same example of regular 

interval sampling over 401 measuring points is used as shown by a straight line in Figure 

14a resulting in a time-domain Morlet wavelet in the [-1 to +1] time range (Figure 14b).        

      In order to prove the stability and efficacy of the inversion method, we present here three 

different examples of missing data strategies. In each case, we randomly cancel some 

percentages of the sampling datasets from the entire data points taken over a regular grid. The 

objective is to make sure at which level of missing data percentage can the inversion-based 1D 

Fourier transformation method still effectively work without any distortion.  
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Figure 14. a) Plot of equidistantly sampled measuring points, b) Regular sampling wavelet in 

the time-domain. 

      Now, let's start with an example where 15% of the measuring data points are randomly 

missed or cancelled, so in this case, a total of around 340 measurement points is used. The 

algorithm of the 1D inversion method is then applied to such missing datasets to give IRLS 

Fourier frequency spectrum as illustrated in Figure 15a. It is obvious that the spectrum obtained 

by the inversion approach is the same as the spectrum obtained by the DFT method in the case 

of complete datasets sampled regularly (Figure 3a). Furthermore, the calculated wavelet in the 

time-domain is obtained by the inverse Fourier transformation as depicted in Figure 15b. A 

striking resemblance appears between the inverted signal when 15% missing data are utilized 

and the complete regular sampling wavelet in the time-domain (Figure 14b). This is also 

achieved by the very low value of data distance of 0.0030 reflecting that the inversion method 

(IRLS-FT) is highly applicable when 15% of datasets are missing. However, the second 

example represents the missing 30% of the data. Hence, the inversion-based 1D Fourier 

transformation (IRLS-FT) algorithm is only implemented on about 282 observing data points. 

Figure 16a shows the 1D Fourier frequency spectrum by the IRLS inversion method which is 

identical to those obtained in both cases of 15% missing data (Figure 15a) and the complete 

datasets sampled regularly through the DFT method (Figure 3a). In addition, the 1D inverse 

Fourier transformation of the IRLS spectrum-based 30% missing data gives a time-domain 

wavelet as seen in Figure 16b. This inverted wavelet has similar characteristics when compared 

to those found by the complete and 15% missing datasets (Figure 14b and Figure 15b 

respectively). Moreover, the data distance in the time-domain between the inverted signal in 
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the case of 30% missing data and the complete regular sampling wavelet (Figure 14b) is 

numerically computed to be 0.0032.  

 

Figure 15. a) The IRLS-FT spectrum when 15% of the regularly sampled datasets are missing 

in the frequency domain, b) The calculated wavelet using IRLS-FT when 15% of the regularly 

sampled datasets are missing in the time domain. 

 

Figure 16. a) The IRLS-FT spectrum when 30% of the regularly sampled datasets are missing 

in the frequency domain, b) The calculated wavelet using IRLS-FT when 30% of the regularly 

sampled datasets are missing in the time domain. 
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      This similarity and low value of data distance prove that our IRLS-FT inversion method is 

effective and still working when we deal with datasets that have 30% of their power missing or 

cancelled. Depending on the stability and efficiency of the newly developed inversion-based 

1D Fourier transformation (IRLS) method in the above-mentioned cases of 15% and 30% 

missing datasets, we increase the percentage of data missed up to 50%. This means that only 

half of the measuring data points are subjected to the inversion method while neglecting the 

other half. In this situation, a total approximate number of the observing points 200 is used to 

produce a 1D Fourier frequency spectrum by the IRLS inversion method as depicted in Figure 

17a. It is noticed that the resultant frequency spectrum is very similar in shape and amplitude 

to those spectra obtained by the DFT of regularly sampled complete datasets (Figure 3a), IRLS-

FT of 15% missing datasets (Figure 15a), and IRLS-FT of 30% missing datasets (Figure 16a). 

The accuracy is further demonstrated in Figure 17b by applying the 1D inverse Fourier 

transformation on the IRLS spectrum deduced from 50% missing datasets. Comparing this 

inverted wavelet to those found in the different cases, such as equidistantly sampled complete 

datasets (Figure 14b), missing 15% of the data (Figure 15b), missing 30% of the data (Figure 

16b) shows great similarities. As in the previous cases, the time-domain wavelet driven from 

the missing 50% of the datasets is numerically characterized by a low data distance value to be 

0.0033. This demonstrates that half of the measuring points are sufficient to provide effective 

results in both time and frequency domains. 

 

Figure 17. a) The IRLS-FT spectrum when 50% of the regularly sampled datasets are missing 

in the frequency domain, b) The calculated wavelet using IRLS-FT when 50% of the regularly 

sampled datasets are missing in the time domain. 
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      From our experience, we can say that the newly developed MATLAB code of the inversion-

based 1D Fourier transformation (IRLS) method is highly effective, robust, and applicable for 

processing regularly sampled incomplete datasets even when 50% of the datasets are missing. 

Above this percentage, the inversion algorithm becomes unstable and does not perform 

effectively. Figure 18 shows a relationship between the percentage of missing data and the data 

distance values. It can be seen that the data distances record relatively low values for all missing 

data below roughly 50% and gradually increase after this missing data point, indicating that our 

inversion with incomplete datasets sampled regularly has made considerable improvements. 

Because of these enhancements and the efficient inversion findings, the algorithm is improved 

to be evaluated on non-regularly sampled incomplete datasets as described in the following 

section. 

 

Figure 18. A plot of missing data fraction against data distance for regularly sampled 

incomplete datasets using the IRLS-FT method. 

3.3.2. INCOMPLETE DATASET WITH NON-REGULAR MEASUREMENT LOCATIONS 

      In the geophysical field survey, we occasionally face more challenging hurdles. One of the 

concerns that should be addressed is non-equidistant measurement positions in conjunction with 

incomplete datasets. This sampling problem piques our curiosity, thus the newly developed 

algorithm of the inversion-based 1D Fourier transformation (IRLS) method is applied to 

incomplete datasets collected on a non-regular grid. To deal with this measurement 

configuration, the same initially created 1D complete equidistant datasets over 401 measuring 

points are randomized as shown in Figure 19a. The resultant Morlet wavelet in the time-domain 

is introduced in Figure 19b using an interval of [-1 to +1]. It is observed that the time-domain 



CHAPTER 3 
 

40 

 

signal is highly disturbed and deformed due to the random selection procedure of the measuring 

data points. 

 

Figure 19. a) The randomized measuring points to produce non-equidistant intervals, b) Non-

regular sampling wavelet in the time domain. 

      To compare the results to those obtained by the above-stated incomplete regularly sampled 

data case, the IRLS inversion method is applied to 1D non-equidistantly sampled data with a 

missing 15% of the measurements. Figure 20a and Figure 20b represent the 1D Fourier 

frequency spectrum and the time-domain wavelet obtained by 1D inverse Fourier 

transformation respectively. The inverted time-domain signal (Figure 20b) is effectively 

improved and enhanced as indicated by a very low data distance value of 0.0026. The inversion 

process, as can be seen, returns the signal's original shape, which is comparable to the regularly 

sampled wavelet (Figure 14b). In addition, the same results are produced when compared to 

the 15% missing data associated with the regularly sampled spectrum and wavelet shown 

in Figure 15a and Figure 15b respectively. These commonalities in the time and frequency 

domains demonstrate the inversion approach's reliability in the non-regular case with 15% 

missing datasets. Furthermore, 30% of the measuring data points are randomly cancelled or 

removed from the whole dataset and supposed to the IRLS inversion method for evaluation. 

The 1D frequency spectrum is estimated in Figure 21a while the inversed Morlet wavelet in a 

time domain is illustrated in Figure 21b. As previously estimated, both the Fourier spectrum 

and inverted time-domain signal are identical when compared to those obtained in the case of 

the 30% missing data sampled regularly (Figure 16a and Figure 16b respectively). The data 
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distance is numerically computed as  0.0027 demonstrating the higher applicability of our 

inversion when 30% of the non-equidistantly sampled datasets are missing. 

 

Figure 20. a) The IRLS-FT spectrum when 15% of the non-regularly sampled datasets are 

missing in the frequency domain, b) The calculated wavelet using IRLS-FT when 15% of the 

non-regularly sampled datasets are missing in the time domain. 

 

Figure 21. a) The IRLS-FT spectrum when 30% of the non-regularly sampled datasets are 

missing in the frequency domain, b) The calculated wavelet using IRLS-FT when 30% of the 

non-regularly sampled datasets are missing in the time domain.  



CHAPTER 3 
 

42 

 

      To demonstrate the efficiency of the newly designed IRLS inversion method concerning 

the non-regular sampling measures, we merely implement the proposed procedure to half of the 

datasets and cancel the other half. Therefore, the inversion algorithm is performed on 1D non-

equidistant datasets that are missing 50% of their total power. Figure 22a  shows the Fourier 

frequency spectrum which is nearly similar to that obtained by the regular 50% missing data 

case (Figure 17a). In that case, the data distance is calculated as 0.0029. In addition, the wavelet 

calculated by the inverse Fourier transformation in the time-domain (Figure 22b) is improved 

to be nearly similar to those estimated by both regularly sampled complete (Figure 14b) and 

50% missing (Figure 17b) datasets. This means that our inversion method is applicable and 

effective when fifty percent of the observing datasets are only available. 

 

Figure 22. a) The IRLS-FT spectrum when 50% of the non-regularly sampled datasets are 

missing in the frequency domain, b) The calculated wavelet using IRLS-FT when 50% of the 

non-regularly sampled datasets are missing in the time domain. 

      According to these considerable and efficient results in both time and frequency domains, 

we can honestly conclude that the newly developed MATLAB code of the inversion-based 1D 

Fourier transformation (IRLS) method can proficiently work with the non-regularly sampled 

incomplete datasets as one would measure along with regular interval grids. Moreover, it can 

be recommended for any investigated area either with regular or non-regular incomplete 

datasets, even if half of the observation sites (50%) (as a maximum) are missing. This is also 

clearly proven when we involve a significant relationship between the missing data percentage 

and data distances as illustrated in Figure 23. Treating the non-regularly sampled incomplete 

datasets indicated that for all missing data under 50%, the newly developed inversion approach 
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exhibit relatively low data distance values and steadily grows following this missing data point 

reflecting the higher inversion efficiency.  

 

Figure 23. A plot of missing data fraction against data distance for non-regularly sampled 

incomplete datasets using the IRLS-FT method. 

3.4. TESTING THE BLOCK INCOMPLETE SAMPLING PROBLEM 

      The effectiveness and quality of the newly developed algorithm of the inversion-based 1D 

Fourier transformation (IRLS) method applied to incomplete datasets sampled both regularly 

and non-regularly paid our attention to more complicated geophysical survey designs. Due to 

the presence of various variables beyond our control, such as lakes, caves, mountains, and so 

on, geophysical field datasets taken along profiles are occasionally corrupted. These natural 

features can be carefully ignored and progressively continue the field data acquisition along 

with the same profile directions.  This problem may result in a large gap or in other words a 

wide area with no information laying in between the other two informational parts of the 

measured profile, and hence, a complex problem of so-called block-incomplete sampling is 

provided. The block-incomplete designs have been thoroughly detailed in some literature (See 

et al, 1997; Kaur and Garg, 2020; Sangpara et al, 2021). In that regard, the newly developed 

reconstruction algorithm has been modified to see how effective it is with this type of survey 

design. The basic concept is to calculate the Fourier spectrum of the incomplete dataset by using 

the inversion-based Fourier transformation method and to use the inverse Fourier 

transformation of this spectrum in calculating the time domain data even in the time points in 

which there are no input data. It is assumed that – to a limit- the data missing doesn’t modify 

the spectrum significantly, so the inverse FT can give a reliable approximation. In this section, 

the same time-domain Morlet wavelet described in all of our prior analyses is utilized through 
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401 measuring points in a tested area covering a time range of [-1 to +1] as shown in Figure 

24. 

 

Figure 24. The generated Morlet wavelet in the time domain. 

      To test our one-dimensional inversion (IRLS) method on block-incomplete sampling 

datasets, a block with an interval of 0.2 sec to 0.23 sec is specified concerning the above-

mentioned wavelet in the time-domain (Figure 24). All the data contents of this block are 

randomly removed or cancelled for designing such block-incomplete sampling as demonstrated 

in Figure 25. In this case, the 1D inversion procedure is approximately implemented only on 

395 total data points. 

 

Figure 25. The block-incomplete sampling wavelet with an interval [0.2–0.23 sec] in the time 

domain. 

      The algorithm of the inversion-based 1D Fourier transformation is then applied to this 

block-incomplete sampling wavelet resulting in a Fourier frequency spectrum as shown in 
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Figure 26a. It is seen that a great similarity in both shapes and amplitude is proven when a 

comparison is performed between the frequency spectrum of the block-incomplete sampling 

datasets (Figure 26a) and the spectra deduced for the regularly sampled complete datasets by 

the DFT approach (Figure 3a) as well as the regularly and non-regularly sampled incomplete 

datasets by IRLS inversion method (for example Figure 15a and Figure 20a respectively). 

Moreover, the calculated wavelet by the 1D inverse Fourier transformation is shown in Figure 

26b. For easier evaluation, both the inverted wavelet and the principle-generated wavelet are 

displayed on the same plot with red and blue colors respectively. The inverted wavelet is shown 

to be the same as that generated in the complete dataset case (Figure 24), with very minor 

variations, as numerically proven by a very low data distance value of 0.0034. In addition, 

compared to those estimated by the IRLS of incomplete datasets sampled both regularly and 

non-regularly (for example Figure 15b and Figure 20b respectively), sufficient agreements are 

highly evidenced.  

 

Figure 26. a) The IRLS-FT spectrum of the block-incomplete sampling signal with an interval 

[0.2–0.23 sec] in the frequency domain, b) The calculated wavelet of the block-incomplete 

sampling datasets with an interval [0.2–0.23 sec] by IRLS-FT in the time-domain. 

  

      Furthermore, another example of the block-incomplete sampling datasets is introduced in 

this study for the sake of our 1D inversion evaluation. In this example, the limits of the block 

are further expanded to be set from 0.2 sec to 0.26 sec as clearly demonstrated by a wide gap 

with no information (Figure 27). This means that a higher number of the observing data points 
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is missing, so about 390 points are only subjected to the inversion-based Fourier transformation 

(IRLS) method. 

 

Figure 27. The block-incomplete sampling wavelet with an interval [0.2–0.26 sec] in the time 

domain. 

      Following this block sampling interval, the 1D Fourier frequency spectrum estimated by 

the IRLS inversion method (Figure 28a) is very close to those given by the DFT of the regularly 

sampled complete datasets (Figure 3a) and the IRLS of both regularly and non-regularly 

sampled incomplete datasets (for example Figure 15a and Figure 20a respectively). However, 

the 1D inverse Fourier transformation is performed resulting in a time-domain wavelet of block-

incomplete sampling datasets as shown in Figure 28b. With the same data distance value 0.0034 

obtained above in the [0.2 - 0.23] block limits case, it is evident that only minor differences 

exist between the IRLS inverted wavelet (red color) and the principal one (blue color). This 

means that the inverted wavelet by our inversion method reconstructed its original shape as if 

we were operating with complete datasets. Furthermore, the inverted wavelet by the inversion 

algorithm (Figure 28b) is nearly identical to those driven by the IRLS of both regularly and 

non-regularly sampled incomplete datasets (for example Figure 15b and Figure 20b 

respectively). According to these findings, the newly developed inversion-based 1D Fourier 

transformation algorithm is extremely effective, stable, robust, and applicable at this level of 

block-incomplete sampling datasets, and it may thus be suggested for geophysical field datasets 

gathered in incomplete block designs.   
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Figure 28. a) The IRLS-FT spectrum of the block-incomplete sampling signal with an interval 

[0.2–0.26 sec] in the frequency domain, b) The calculated wavelet of the block-incomplete 

sampling datasets with an interval [0.2–0.26 sec] by IRLS-FT in the time-domain. 

  

      These procedures are continued at higher windows of block-incomplete datasets to detect 

the block limits at which the 1D inversion method is fundamentally broken or not satisfied. To 

do so, the block distance range is raised to [0.2–0.3 sec], and hence, the IRLS inversion 

algorithm is only executed on roughly 381 total data points as shown in Figure 29.  

 

Figure 29. The block-incomplete sampling wavelet with an interval [0.2–0.3 sec] in the time 

domain. 

      The used data points are subjected to the inversion resulting in a 1D Fourier frequency 

spectrum as presented in Figure 30a. A distinct distortion in both real and imaginary parts of 
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the IRLS spectrum with this block-incomplete interval is revealed. This deformation appears in 

shapes and amplitudes when compared to those of regularly sampled complete datasets (Figure 

3a) by the DFT method as well as the regularly and non-regularly sampled incomplete datasets 

by the IRLS inversion procedure (for example Figure 15a and Figure 20a respectively). 

Furthermore, Figure 30b shows the 1D inverse Fourier transformation of the mentioned 

spectrum producing a block-incomplete sampling wavelet in the time domain. In a comparison 

with the signal obtained with complete datasets case (Figure 24) and those found by the IRLS 

of incomplete datasets sampled regularly and non-regularly (for example Figure 

15b and Figure 20b respectively), the inverted signal using this block interval [0.2–0.3 sec] is 

highly distorted in both shapes and amplitudes. This means that the stability, efficiency, and 

applicability of the newly developed inversion-based 1D Fourier transformation in solving the 

block-incomplete sampling problems is well satisfied for specific block intervals; beyond this 

interval, the inversion algorithm is not effective enough and stops working. 

 

Figure 30. a) The IRLS-FT spectrum of the block-incomplete sampling signal with an interval 

[0.2–0.3 sec] in the frequency domain, b) The calculated wavelet of the block-incomplete 

sampling datasets with an interval [0.2–0.3 sec] by IRLS-FT in the time-domain.  

 

According to the results demonstrated above, I declare thesis statement 1 as follows: 

Thesis 1 

I gave a comprehensive analysis of the inversion-based Fourier transformation algorithm 

applied to 1D synthetic wavelet to reduce the outlier sensitivity as well as to deal with the issues 
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of irregular sampling and incomplete missing data. To achieve such aims, I used a time-domain 

signal created over 401 measuring points which are then contaminated with both Gaussian and 

Cauchy distributed noises. 

Dealing with the regularly and non-regularly sampled incomplete datasets, I found that the 

inversion is highly effective, robust, and applicable even when half of the measurements (50%) 

are missing. Far beyond this percentage, the inversion algorithm becomes unstable and does 

not perform effectively where the inverse problem is marginally over-determined. In my 

analysis of the block-incomplete sampling problem, I found that for certain block intervals, the 

accuracy of the 1D datasets in both frequency and time domains is well satisfactory which is 

highly distorted as I increase the missing block intervals because of the marginal over-

determination rate. 
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Chapter 4 

MAGNETIC DATA PROCESSING USING THE 2D IRLS-FT METHOD 

 

4.1. AN OVERVIEW OF THE MAGNETIC SURVEYING METHOD 

      It is generally believed that the magnetic method is one of the oldest and the most widely 

used geophysical techniques for subsurface geology investigation. The rapidity of the coverage 

procedures and low cost for areas being surveyed are just some of the many advantages of the  

technique. The magnetic method is primarily based on measuring variations in the magnetic 

field of the earth, whose intensity is related to the location of the observing points in the 

magnetic field at the surface of the earth, as well as the distribution of subsurface magnetized 

sources with varying magnetic susceptibilities, i.e. induced and/or remanent magnetization 

(Hubbard and Linde, 2011). The properties of some magnetic minerals (such as magnetite) 

found in the earth's interior rock bodies were first analyzed by the Chinese, while Sweden began 

exploring local anomalies of iron-ores in the direction of the magnetic field in 1640 and 

continued until the end of the century. Even though the majority of rock-forming minerals are 

practically non-magnetic, certain rock types include enough magnetic minerals to cause 

considerable magnetic anomalies. Magnetic anomalies can also be produced by man-made 

ferrous artifacts. In general, most of the magnetic effects are created from the igneous and 

metamorphic rocks which are characterized by higher magnetic susceptibilities, and low 

magnetic susceptibility is usually associated with sedimentary rocks. The magnetic 

susceptibilities of various rocks and ore minerals are depicted in further depth (Dobrin, 1976; 

Milsom, 2003).  

      Moreover, a wide range of applications using the geophysical magnetic method is also 

provided. This can be performed either for small-scale purposes such as environment, 

engineering, and archaeology to determine the buried features of interest or in large-scale 

designs for regional exploration of subsurface structures. In fact, one of the most important 

applications of the magnetic method in water, gas, and oil explorations is mapping the basement 

surface, and therefore, the thickness of the overlying sedimentary strata, which acts as potential 

zones, can be predicted in significant amounts. Several applications of the geophysical magnetic 

method have been introduced by many authors to solve a variety of considerable issues such as 

(Studt, 1964; Hochsten and Hunt, 1970; Mekhemer et al, 2007; Rabeh and Miranda, 2008; 

Araffa, 2013; Abdelaziz, 2019; Araffa et al, 2019; Montsion et al, 2021). Using different types 

of magnetic instruments (for example Fluxgate magnetometer), the magnetic surveys can be 

https://www.sciencedirect.com/science/article/pii/B9780444531995000439#!
https://www.sciencedirect.com/science/article/pii/B9780444531995000439#!
javascript:;
javascript:;
https://www.sciencedirect.com/science/article/pii/S0040195121001736#!


CHAPTER 4 
 

51 

 

executed on land, at sea, and in the air. Magnetic data processing is subsequently improved to 

correct the measured datasets that have been corrupted by the effects of the natural magnetic 

field of the earth. The magnetic data that has been enhanced by proposed processing procedures 

can be displayed in the forms of profiles or contour maps as a function of total intensity, relative 

intensity, and vertical or horizontal gradient anomalies. More details about the processing and 

interpretations approaches of magnetic datasets can be found in a wide variety of geophysical 

literature (Dobrin, 1981; Reynolds, 1997; Sharma, 1997; Kearey et al, 2002; Milsom, 2003; 

Hinze et al, 2013). 

4.2. REDUCTION TO POLE OF THE EARTH’S MAGNETIC FIELD 

      Reduction to the pole (RTP) is considered to be one of the most common procedures in 

magnetic data processing, particularly for large-scale mapping. Since the Earth’s geomagnetic 

field is characterized by its dipolar nature, any magnetic body buried beneath the ground, 

especially located at the intermediate latitudes, can produce an anomaly consisting of two parts 

(positive and negative). The exact location of this causative body lies between these two parts 

(Dobrin, 1981). This property changes the shape of the magnetic field due to the inclination and 

orientation of the induced magnetization vector from the magnetic poles to the equator and 

causes some difficulties in detecting the exact shapes and locations of the magnetized causative 

sources. This problem can be only solved when the total magnetic field is reduced to the 

northern or southern Earth’s poles or equator to avoid the inclination and polarity effect 

(Baranov and Naudy, 1964; Blakely, 1996). In that regard, the reduction to the pole (RTP) 

provides the conversion of data carried out in the inclined Earth's magnetic field to that as one 

would measure at the magnetic pole. As a result, the anomaly can be located directly above the 

center of the causative body with the assumption that remanent magnetism is minor in 

comparison to induced magnetization. It means that the reduction to pole enables us to detect 

the anomaly source position more accurately. Moreover, it is generally observed that at low 

latitudes such as the geomagnetic equator, the processing of the measured datasets concerning 

the reduction to the pole is suffering from a complicated instability problem and in this case, 

the reduction to the equator is highly suggested (Luo Yao et al, 2010). In this chapter, the 

applicability of the two-dimensional inversion-based Fourier transformation in the field of 

reduction to the earth’s magnetic pole is evaluated on 2D synthetic magnetic datasets sampled 

both equidistantly and non-equidistantly as well as the incomplete sampling design of missing 

data.  
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4.3. TESTING THE NOISE REDUCTION CAPABILITIES IN 2D   

      As described above for the processing of the 1D synthetic datasets in chapter 3, the noise 

rejection capacities of both the conventional Fourier transformation (2D DFT) and the 

inversion-based 2D Fourier transformation (2D IRLS-FT) approaches are tested on equidistant 

synthetic magnetic datasets sampled in two-dimension. The previously discussed 2D algorithm 

of the inversion method in chapter 2 was developed by the University of Miskolc, Department 

of Geophysics. Several articles have been already introduced concerning the application of the 

two noise filtering techniques to 2D magnetic datasets sampled both equidistantly and non-

equidistantly (Dobróka et al, 2017; Nuamah and Dobróka, 2019; Abdelaziz and Dobróka, 2020; 

Nuamah et al, 2021). Therefore, in this PhD dissertation, 2D magnetic data processing is briefly 

provided through a comparison between the two proposed methods in the framework of 

reduction to the earth’s magnetic pole. 

4.3.1. SYNTHETIC 2D MAGNETIC DATA GENERATION 

      For magnetic data processing, the method constructed by Kunaratnam (1981) was applied 

to calculate two-dimensional synthetic magnetic datasets. In this investigation, the synthetic 

data are generated above an FT-shaped magnetic anomaly with a surface ranging from -100 m 

to +100 m in both 𝑥 and 𝑦 coordinates. The proceeded magnetic anomaly is created using a 

total magnetic field of 200 nT. To do so, the values of the magnetic inclination and declination, 

which are selected depending mainly on the geographical locations, are 63° and 3° respectively 

(for a hypothetical Hungarian location). Furthermore, the measuring data points are 

equidistantly sampled with an interval of 5 m spacing in both 𝑥 and 𝑦 directions (grid cell size 

is 5m). It means that 1681 total measurements are subjected to the traditional Fourier 

transformation (2D DFT) and the inversion-based 2D Fourier transformation (2D IRLS-FT) 

method for achieving such an aim of magnetic data filtering. Figure 31 shows a total intensity 

magnetic anomaly map of the noise-free datasets. A close examination of this map demonstrates 

that the FT-shaped magnetic body is characterized by the presence of relatively high and low 

magnetic anomalies of different magnitudes varying from -100 nT to 250 nT. 
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Figure 31. 2D noise-free synthetic magnetic datasets for the regularly sampled grid. 

4.3.2. REDUCING OUTLIER SENSITIVITY IN 2D IRLS-FT 

      For signal processing and testing how effective the inversion-based 2D Fourier 

transformation (2D IRLS-FT) method is for outlier sensitivity reduction, the above-mentioned 

noise-free magnetic datasets (Figure 31) are initially sampled equidistantly through the 

distribution of 41 x 41 surface observation locations as demonstrated in Figure 32 by the 

regular sampling interval (5 m in x and y coordinates). 

 

Figure 32. The regular grid of the measuring magnetic stations. 

      The 2D algorithm of the traditional Fourier transformation (2D DFT) is used to convert 

generated magnetic datasets (Figure 31) from the space to the frequency domain, resulting in a 
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2D amplitude spectrum of noise-free data as illustrated in Figure 33. To obtain a suitable scale 

in the wavenumber domain, the limits of 𝑥 and 𝑦 coordinates were simplified to be from – 0.1 

to 0.1 (the Nyquist interval of the spectrum). 

 

Figure 33. The 2D amplitude spectrum of the regularly sampled noise-free magnetic data 

using DFT. 

      The magnetic data interpretation can be improved by reducing the observations to the pole 

(𝐼 = 90°) in the frequency domain using the following formula: 𝑅( 𝑢 , 𝑣 ) = 𝑇( 𝑢 , 𝑣 ) 𝑆( 𝑢 , 𝑣 ),                                            (91) 

where 𝑇( 𝑢 , 𝑣 ) is the 2D Fourier transform of the data and 𝑆( 𝑢 , 𝑣 ) is the frequency domain 

operator of the pole reduction (Blakely, 1996). The calculated data in the form of an RTP 

(magnetic map reduced to the pole) (Figure 34) can be then obtained utilizing the 2D inverse 

Fourier transformation of the spectrum given in Eq. 91 containing the IRLS FT spectrum of the 

dataset. It is obvious that the negative anomalies are cancelled in the RTP map, its data distance 

from the original (non-reduced to pole) map is 0.0109.  

      To test the noise reduction capability of the inversion method and also for simulating the 

real datasets, the generated synthetic magnetic data are contaminated with random noise of 

Cauchy distribution using a scale parameter of 0.03 as seen in Figure 35. It is observed that the 

Cauchy noise-contaminated data is distorted and displays more spikes compared to the noise-

free datasets (Figure 31), resulting in quite higher magnetic values (from -300 nT to 400 nT). 
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Figure 34. The reduced-to-pole of the regularly sampled noise-free magnetic data sets using 

DFT. 

 

Figure 35. 2D noisy synthetic magnetic datasets for the regularly sampled grid. 

      Similarly, the traditional Fourier transformation (2D DFT) is applied to the regularly 

sampled noisy magnetic datasets to obtain the 2D Fourier spectrum as presented in Figure 36. 

The number of samples in data space and frequency spaces are the same, so the inhomogeneous 

linear algebraic set of equations is well-determined. This results in a direct projection of the 

noises from the data space to the frequency space. Compared to the 2D spectrum of the noise-

free data (Figure 33), the noisy amplitude spectrum estimated by the DFT is deformed, 

reflecting its quite high sensitivity to the added noise. 
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Figure 36. The 2D amplitude spectrum of the regularly sampled Cauchy noise-contaminated 

data using DFT. 

      Using the DFT method, the 2D inverse Fourier transform is applied to the noisy data 

showing the reduced-to-pole space domain data (RTP) in Figure 37. The calculated pole 

reduction of the noisy magnetic datasets is extremely distorted which is clearly evidenced by 

the remains of the added Cauchy noise simulating the outlier effect as well as the higher 

magnetic values (from 50 nT to 450 nT) compared to the generated noisy magnetic datasets 

(Figure 35). In such a case, the mean data distance records an extremely high number of 0.4831, 

revealing the low noise rejection capability of the 2D DFT, especially in the Cauchy noise case. 

 

Figure 37. The reduced-to-pole of the regularly sampled Cauchy noise-contaminated data 

using DFT. 
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      At this stage the 2D algorithm of the inversion-based Fourier transformation method (2D 

IRLS-FT) is implemented on the same generated noisy data (Figure. 35), resulting in the 2D 

amplitude spectrum as shown in Figure 38. This spectrum is estimated using Hermite functions 

of order Mx=My=25 as an inversion parameter to achieve both inversion accuracy and stability. 

The total number of the unknown expansion coefficients is 625, and the number of the data is 

1681, so the inverse problem is highly overdetermined resulting in a reduced level of projecting 

of the noises from the data space to the frequency space. The results of inversion prove 

sufficient improvements where most of the defects that appeared with DFT (Figure. 36) have 

been removed to be nearly similar to that of the noise-free spectrum (Figure 33). 

 

Figure 38. The 2D amplitude spectrum of the regularly sampled Cauchy noise-contaminated 

data using IRLS-FT. 

      To prove the inversion success, the reduction to the pole of the same noisy magnetic datasets 

is calculated using the 2D Fourier transformation of the IRLS, as depicted in Figure 39. It is 

indicated that the reduced-to-pole space domain data by the IRLS-FT is extremely improved 

and enhanced compared to the outliers problem associated with the noisy RTP magnetic map 

of the DFT method (Figure. 37). The RTP map of Figure 39 is almost identical to that of the 

noise-free reduction to pole space domain data (Figure 34) in both anomaly shape and magnetic 

amplitudes. The improvement is also evidenced by a relatively low data distance value of 

0.0132 compared to the noise-free DFT used RTP map. According to the results, the iteratively 

reweighted least-squares Fourier transformation (2D IRLS-FT) method is outlier-resistant and 

quite robust, demonstrating great success in the framework of noise rejection capability for 

processing magnetic data measurements. 
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Figure 39. The reduced-to-pole of the regularly sampled Cauchy noise-contaminated data 

using IRLS-FT. 

4.4. TESTING THE NON-REGULAR SAMPLING PROBLEM IN 2D 

      In geophysical surveys such as magnetic data acquisition, one gets large data sets ranging 

from 10,000 to 1 million measuring points with highly irregular sampling patterns. The 

challenge is to efficiently interpolate or estimate the measurements into the grid. Treating such 

sampling configurations necessitates the use of rapid and reliable algorithms as well as the 

consideration of extra information such as statistical features or the underlying physical process. 

In that regard, the two-dimensional algorithm of the inversion-based Fourier transformation 

(2D IRLS-FT) was developed to enhance the data quality and solve some of the problems 

accompanied by non-regular sampling. With non-equidistant specimen magnetic datasets, 

Nuamah and Dobróka (2019) proved the applicability and efficiency of the 2D inversion 

approach for pole reduction of CL-shaped magnetic bodies. Here, we use the above-mentioned 

example of the FT-shaped magnetic body to show briefly the stability and accuracy of the IRLS 

inversion approach with the non-regular sampling procedures.  

4.4.1. COMPLETE MAGNETIC DATASET WITH RANDOM MEASUREMENT 

LOCATIONS 

      In this section, the same number of magnetic data points (1681 measurements) are 

randomized along with a non-regular grid in x and y directions. This sampling strategy of the 

random measurement positioning is performed through a random shifting process of observing 
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data points around the exact positions by half sampling interval in both coordinates. The non-

equidistant distributions of measured data points are represented in Figure 40. 

 

Figure 40. A plot of non-equidistantly sampled magnetic measuring points. 

      The non-regular noise-free sampling data points are subjected to the inversion-based FT 

algorithm utilizing the same order of Hermite functions (M=25 in both x and y directions) to 

establish the 2D Fourier frequency spectrum as illustrated in Figure 41. It is demonstrated that 

the non-regular IRLS spectrum is nearly similar to those of the regularly sampled noise-free 

spectra by the DFT and inversion-based FT (Figure 33). 

 

Figure 41. The 2D amplitude spectrum of the non-regularly sampled magnetic data using 

IRLS-FT. 
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      In the same way, the reduced-to-pole magnetic data in the space domain is obtained using 

the 2D inverse Fourier transformation of the non-regular spectrum in Eq. 91 as shown in Figure 

42. Comparing this pole reduction model to those found in the noise-free regular case by the 

DFT (Figure 34) as well as the IRLS inversion of the noisy data (Figure 39), great similarities 

are established. This can also be proved quantitatively by its low mean distance value of 0.0147. 

It dedicates the higher applicability and effectiveness of the 2D inversion-based Fourier 

transformation (2D IRLS-FT) algorithm when we deal with complete datasets sampled non-

equidistantly. 

 

Figure 42. The reduced-to-pole of the non-regularly sampled magnetic data using IRLS-FT. 

4.4.2. COMPLETE MAGNETIC DATASET WITH RANDOM WALK MEASUREMENT 

POSITIONS 

4.4.2.1. The Concept of Random Walk Measuring  

      The geophysical survey of random walk measurements procedure that is carried out over 

non-equidistant grids is provided due to the restrictions associated with the unpaved areas under 

investigation or advances in the survey’s equipment. Although for geophysical field 

observations, regular sampling across the explored areas has traditionally been the norm, most 

geophysical datasets, particularly magnetic and gravitational measurements, are frequently 

carried out along with irregularly sampled grids, making survey design a vital step in both 

obtaining enough data at a low cost and avoiding difficulties associated to survey spacing. This 

can also help to speed up the data collection procedures in the field (Dimri and Srivastava, 

2007). The design of the survey network plays an important role in maximizing the number of 
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data points and improving data quality. The objective of the survey, the size and shape of the 

anomalies of interest, the amount of noise in the magnetic field, the size of the area being 

explored, and available instrumentation are all factors to consider while designing the survey. 

Since the magnetic and/or gravitational data acquisition is occasionally carried out in unpaved 

investigation areas, which may be the result of natural or man-made causes, we are sometimes 

forced to measure the data irregularly (randomly selected measuring points). Problems with this 

kind of data sampling are rarely rectified during processing, hence they must be resolved only 

during the survey design phase. Therefore, in our investigation, we employ the above-

mentioned inversion-based 2D Fourier transformation (IRLS-FT) method to random walking 

magnetic measurements to assess its processing capability in the framework of the earth’s 

magnetic pole reduction of 2D synthetic magnetic datasets. 

4.4.2.2. The 2D Application 

      To verify the random walk sampling of 2D magnetic datasets, the regular measurements 

(1681 observing points) stated above are totally randomized over the tested area in both x and 

y directions. Figure 43 shows the random spread of the magnetic measuring stations. It is seen 

that all the observing points are separated from each other by irregular or random spacing 

intervals.  

 

Figure 43. A plot of the randomly sampled magnetic measuring points. 

      The total intensity magnetic anomaly map produced by the randomly sampled magnetic 

measurements is presented in Figure 44. The irregularity of the measuring intervals causes the 

magnetic contour lines to be sharper with an irregular surface that does not cover the whole 

tested area when compared to the magnetic map of the regular surface (Figure 31). 
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Figure 44. 2D synthetic magnetic datasets for the randomly sampled grid. 

      Employing the 2D inversion algorithm to the randomly sampled magnetic datasets using 

(Mx=My=25) provides a 2D Fourier frequency spectrum as displayed in Figure 45. In this case 

of randomly sampled datasets, the calculated spectrum indicates a great similarity in both 

anomaly shapes and amplitudes when compared to those of the regular sampling found by the 

DFT and IRLS inversion approaches (Figure 33 and Figure 38 respectively)  as well as the 

non-equidistantly estimated IRLS spectrum (Figure 41).  

 

Figure 45. The 2D amplitude spectrum of the randomly sampled magnetic data using IRLS-

FT. 
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      The 2D inverse Fourier transformation is subsequently applied to the spectrum given in Eq. 

91 (containing the IRLS-FT of the randomly sampled magnetic data) to establish a reduced to 

pole magnetic data in random sampling geometry as illustrated in Figure 46. It is seen that the 

RTP magnetic map obtained by the inversion-based FT algorithm with random walk 

measurements returned to its original form as we would measure along with an equidistantly or 

regularly sampled grid. It is identical to those found by both the DFT and IRLS of regularly 

sampled datasets (Figure 34 and Figure 39 respectively) and that estimated by the IRLS 

inversion method in the non-equidistantly sampling case (Figure 42). Additionally, the 

inversion method's effectiveness and reliability are numerically verified by a relatively low 

value of the mean distance of 0.0153. The developments and quality of the proceeded magnetic 

datasets sampled in a random walk configuration are quite enough to prove the stability, 

effectiveness, and higher applicability of the inversion-based 2D Fourier transformation, and 

therefore, it can be suggested to deal with other geophysical tools such as the gravitational 

method. 

 

Figure 46. The reduced-to-pole of the randomly sampled magnetic data using IRLS-FT. 

4.5. TESTING THE INCOMPLETE SAMPLING PROBLEM IN 2D 

      It is generally believed that the incomplete sampling problem is of great importance since 

the magnetic field data measurements are sometimes missing or lost due to several natural 

and/or artificial conditions as discussed before. Therefore a newly developed inversion-based 

2D Fourier transformation MATLAB code is created to achieve such an aim of magnetic data 

processing. In that regard, regularly, non-equidistantly, and randomly sampled magnetic 
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datasets in 2D are all subjected to the inversion algorithm using different missing percentages. 

Both the noise-free and noisy datasets are presented for evaluating the inversion efficiency and 

stability. This new technique enables us to solve the unlikely problems associated with 

incomplete or missing data sets during the field acquisition procedures.  

4.5.1. INCOMPLETE MAGNETIC DATASET WITH REGULAR SAMPLING 

      The initially regularly sampled complete magnetic data over 1681 measurements (Figure 

32) are used to evaluate the inversion efficiency in different scenarios of the missing datasets. 

We start with a first example when 10 percent of the 2D magnetic datasets are randomly missing 

or cancelled from the entire data. Figure 47a shows the distribution of nearly 1512 magnetic 

observations after randomly removing 10% of the data in x and y directions. In this case, the 

newly developed inversion algorithm is implemented using Hermite functions of order 

(Mx=My=25) to establish the 2D Fourier frequency spectrum as illustrated in Figure 47b. The 

2D inverse RTP map of the incomplete data set is presented in Figure 47c.  

 

Figure 47. a) A plot of regular sampling magnetic observations when 10% of the datasets are 

missing in the x and y-directions, b) The 2D IRLS-FT spectrum when 10% of the regularly 

sampled magnetic datasets are missing, c) The reduced-to-pole map using IRLS-FT when 

10% of the regularly sampled magnetic datasets are missing. 
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      It is observed that both the estimated 2D spectrum and the RTP map are similar to those 

found by the traditional DFT method of the regularly sampled complete datasets (Figure 33 and 

Figure 34 respectively) as well as those obtained with the IRLS inversion (Figure 38 and Figure 

39 respectively). In this case, the value of the mean distance is numerically computed to be 

0.0073 reflecting the inversion effectiveness with a 10% missing date case. Furthermore, to 

demonstrate the stability and accuracy of the inversion approach, a higher percentage of missing 

datasets are subjected to the newly developed algorithm. Figures 48a, b, c, and d illustrate the 

2D amplitude spectra by the IRLS method at 15%, 25%, 35%, and 45% missing datasets 

respectively. The total number of datasets used in 15% missing case is about 1417, 1271 for 

25% while 1094 and 922 for the cases of 35%, and 45% missing data respectively. All the 

calculated IRLS spectra prove high similarity when compared to those of the regularly sampled 

complete datasets by the DFT and IRLS-FT (Figure 33 and Figure 38 respectively).     

 

Figure 48. The 2D IRLS-FT spectra when a) 15% of the regularly sampled magnetic datasets 

are missing, b) 25% of the regularly sampled magnetic datasets are missing, c) 35% of the 

regularly sampled magnetic datasets are missing, d) 45% of the regularly sampled magnetic 

datasets are missing. 

      Similarly, the above-mentioned spectra are used in Eq.91 to produce the space domain pole 

reduction of 15%, 25%, 35%, and 45% missing datasets as shown in Figures 49a, b, c, and 
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d respectively. It is seen that when compared to the reduced-to-pole datasets obtained by the 

DFT and IRLS of the complete regular sampling case (Figure 34 and Figure 39 respectively), 

the RTP magnetic anomaly maps of the above missing data percentage demonstrate a great 

similarity. This qualification can be numerically proven by the mean distance values which are 

estimated as 0.0104, 0.0123, 0.0230, and 0.0487 for 15%, 25%, 35%, and 45% missing datasets 

respectively. In these cases of the missing datasets, the 2D inversion algorithm is effective and 

applicable because the inverse problem is still over-determined as indicated by the higher 

number of data points when compared to the number of the model parameters (𝑀𝑥  𝑀𝑦=625).  

 

Figure 49. The reduced-to-pole maps using IRLS-FT when a) 15% of the regularly sampled 

magnetic datasets are missing, b) 25% of the regularly sampled magnetic datasets are 

missing, c) 35% of the regularly sampled magnetic datasets are missing, d) 45% of the 

regularly sampled magnetic datasets are missing. 

      On the other hand, Figures 50a and b depict the 2D spectrum and the RTP map respectively 

when 50% of the data are missing (usage of about 839 data points) while those estimated in 

60% missing data case (usage of about 657 data points) are represented in Figures 50c and d 

respectively. It is observed that when 50% of the data are missing, the inversion still works but 

with a much higher mean data distance value (0.0743), almost seven times higher than in the 

15% missing datasets. In contrast, both the 2D spectrum and the RTP magnetic map established 
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with the missing 60% of the datasets are distorted with a very high value of the mean distance 

of 0.4764. It is that by increasing the percentage of the missing datasets, the inverse problem 

becomes less and less over-determined where the model parameters (𝑀𝑥  𝑀𝑦=625) are close to 

the number of data points (marginally overdetermined inversion). Accordingly, the newly 

developed inversion-based 2D Fourier transformation is effective and robust when processing 

regular sampling datasets even with 50% missing points as a maximum (The over-

determination rate is 839/625=1.34). These investigations show a new (and economically 

meaningful) possibility in planning field measurements: the number of measurement points can 

be reduced before reaching an acceptable inaccuracy in determining the RTP map. 

 

 Figure 50. a) The 2D IRLS-FT spectrum when 50% of the regularly sampled magnetic 

datasets are missing, b) The reduced-to-pole map using IRLS-FT when 50% of the regularly 

sampled magnetic datasets are missing, c) The 2D IRLS-FT spectrum when 60% of the 

regularly sampled magnetic datasets are missing, d) The reduced-to-pole map using IRLS-FT 

when 60% of the regularly sampled magnetic datasets are missing. 

4.5.2. INCOMPLETE MAGNETIC DATASET WITH NON-EQUIDISTANT SAMPLING 

      Similar to that of the regularly sampled datasets, the inversion-based FT method is applied 

to the non-equidistantly sampled incomplete magnetic datasets. This is to confirm the quality 

and applicability of the inversion approach in tackling this incomplete sample problem. The 
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same non-equidistant sampling magnetic datasets established previously for 1681 

measurements with 5m random shifting of the observation points in x and y directions are 

utilized (Figure 40). To compare the results to those obtained in regular sampling geometry, 

the non-equidistantly sampled incomplete datasets are subjected to the IRLS inversion 

algorithm at the same percentages of the missing magnetic observations. Figures 51a, b, c, and 

d demonstrate the 2D amplitude-frequency spectra at 15%, 25%, 35%, and 45% missing 

datasets. Hermite functions of order (Mx=My=25) are also selected to present such Fourier 

spectra. The random sampling procedure leads to about 1435 observing points in the 15% 

missing data case, 1274 for 25%, whereas the total number of the measuring stations in the 35% 

and 45% missing data circumstances is 1090 and 947 respectively. Hence, all the 2D non-

equidistantly estimated spectra at the mentioned missing data percentages are nearly similar in 

anomaly shapes and amplitudes when compared to those found by the IRLS inversion method 

of the regularly sampled incomplete magnetic datasets at the same missing proportions (Figure 

48). These findings prove that the inversion procedure can give acceptable results even in such 

an incomplete sampling configuration. 

 

Figure 51. The 2D IRLS-FT spectra when a) 15% of the non-equidistantly sampled magnetic 

datasets are missing, b) 25% of the non-equidistantly sampled magnetic datasets are missing, 

c) 35% of the non-equidistantly sampled magnetic datasets are missing, d) 45% of the non-

equidistantly sampled magnetic datasets are missing. 
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      The 2D Fourier transformations of the above amplitude spectra are used in Eq. 91 giving 

the pole reduction maps of the non-equidistant magnetic data sampled incompletely with 

missing 15%, 25%, 35%, and 45% of measuring points respectively (the RTP maps in Figures 

52a, b, c, and d respectively). Compared to the reduced-to-pole magnetic anomaly maps 

estimated in the incomplete magnetic data sampled regularly (Figure 49), great similarities are 

provided. At this stage, the over-determined inverse problem is dominant where the number of 

the data points is still more than that of the model parameters (𝑀𝑥 𝑀𝑦=625). The inversion 

efficiency is also quantitatively proven through the mean distance calculations. A value of 

0.0107 is estimated in the 15% missing data case and 0.0135 for 25% missing case whilst the 

35% and 45% missing data cases are represented by mean distance values of 0.0297 and 0.0435 

respectively. 

 

Figure 52. The reduced-to-pole maps using IRLS-FT when a) 15% of the non-equidistantly 

sampled magnetic datasets are missing, b) 25% of the non-equidistantly sampled magnetic 

datasets are missing, c) 35% of the non-equidistantly sampled magnetic datasets are missing, 

d) 45% of the non-equidistantly sampled magnetic datasets are missing. 
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      To evaluate the inversion applicability at higher levels of missing data points, half of the 

magnetic measurements (50%) are randomly cancelled, resulting in a total of roughly 825 

observing points on which the IRLS inversion algorithm is implemented. Figures 53a and b 

respectively demonstrate the 2D amplitude spectrum and the RTP magnetic anomaly map of 

the non-equidistant incomplete data that is missing 50% of its total power. It is estimated that 

both the spectrum and pole reduction data are roughly similar to those deduced by the IRLS 

inversion of the 50% missing datasets sampled regularly (Figures 50a and b). In this case, the 

estimated value of the mean distance is 0.0709 which is approximately seven times higher than 

that of the non-equidistant 15% missing datasets. 

 

Figure 53. a) The 2D IRLS-FT spectrum when 50% of the non-equidistantly sampled 

magnetic datasets are missing, b) The reduced-to-pole map using IRLS-FT when 50% of the 

non-equidistantly sampled magnetic datasets are missing. 

 

      The missing data percentage is subsequently raised to 60%, and hence the 2D IRLS 

inversion approach is only performed on 641 measuring data points. It means that our inverse 

problem is sounded to be marginally over-determined where the observing data points used are 

nearly close to the number of the model parameters (𝑀𝑥 𝑀𝑦=625). This is the primary cause of 

the inversion procedure's inefficiency and instability, which is exacerbated by larger rates of 

missing data proportions, as in our instance (60%).  

      Moreover, the 2D amplitude spectrum and the RTP magnetic anomaly map are shown in 

Figures 54a and b respectively. The high distortion appears in both anomaly shapes and 

amplitudes providing a very high value of the mean data distance of 0.3468. As concluded in 

the regularly sampled incomplete datasets, the reconstructed inversion method is satisfactory 

and highly applicable to the incomplete magnetic datasets sampled non-equidistantly up to 50% 

missing points as a maximum. This is because the inverse problem is constrained by the over-
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determination value which in our case is calculated as 825/625=1.32. Accordingly, our 

inversion-based FT can be recommended to deal with the incomplete random walk 

measurement positioning. 

 

Figure 54. a) The 2D IRLS-FT spectrum when 60% of the non-equidistantly sampled 

magnetic datasets are missing, b) The reduced-to-pole map using IRLS-FT when 60% of the 

non-equidistantly sampled magnetic datasets are missing. 

 

4.5.3. INCOMPLETE MAGNETIC DATASET WITH RANDOM WALK SAMPLING 

      The inversion efficiency and applicability to the incomplete magnetic datasets sampled both 

regularly and non-equidistantly motivated us to evaluate the 2D algorithm on the incomplete 

random walk measurement positions. The randomly distributed magnetic datasets taken over 

1681 observations (Figure 43) are used to achieve such an aim.  

      For comparison, the 2D amplitude-frequency spectra estimated by the IRLS inversion 

method with missing 15%, 25%, 35%, and 45% of the data are shown in Figures 55a, b, c, and 

d respectively. The same order of the Hermite functions (M=25 in both x and y- directions) is 

chosen. 1426 measuring points are utilized for the 15% missing data case, while 1267, 1073, 

and 941 for the 25%, 35%, and 45% cases respectively. The results demonstrate great similarity 

when we compare the 2D spectra of the random walk measurements to those found by the 

inversion approach in both the regularly (Figure 48) and the non-equidistantly sampled 

incomplete magnetic datasets (Figure 51).  
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Figure 55. The 2D IRLS-FT spectra when a) 15% of the randomly sampled magnetic datasets 

are missing, b) 25% of the randomly sampled magnetic datasets are missing, c) 35% of the 

randomly sampled magnetic datasets are missing, d) 45% of the randomly sampled magnetic 

datasets are missing. 

 

      The reduced to pole magnetic anomaly maps calculated at 15%, 25%, 35%, and 45% 

missing data are illustrated in Figures 56a, b, c, and d respectively. It is noticed that the pole 

reduction findings are nearly similar to those provided with the incomplete magnetic datasets 

sampled regularly (Figure 49) and non-equidistantly (Figure 52) in the anomaly shapes and 

amplitudes. In the case of 15% missing data, the mean distance value is calculated as 0.0297 

while the data that missing 25%, 35%, and 45% from the entire measurements are characterized 

by distances 0.0350, 0.0444, and 0.0603 respectively, which are generally a little bit higher than 

those calculated in both the regular and non-equidistant sampling configurations. These 

percentages of the missing data reflect the effectiveness of the inversion method where the 

inverse problem is over-determined. Similarly, the IRLS inversion method is applied to half of 

the magnetic measurements through missing 50% of the data, and hence 852 observing points 

are used. Figures 57a and b show the calculated 2D frequency spectrum and the reduced to pole 

map respectively.  
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Figure 56. The reduced-to-pole maps using IRLS-FT when a) 15% of the randomly sampled 

magnetic datasets are missing, b) 25% of the randomly sampled magnetic datasets are 

missing, c) 35% of the randomly sampled magnetic datasets are missing, d) 45% of the 

randomly sampled magnetic datasets are missing. 

 

Figure 57. a) The 2D IRLS-FT spectrum when 50% of the randomly sampled magnetic 

datasets are missing, b) The reduced-to-pole map using IRLS-FT when 50% of the randomly 

sampled magnetic datasets are missing. 

      Sufficient improvements are proven when comparing both the spectrum and RTP map of 

50% missing data to those obtained in both cases of the regularly (Figures 50a and b 
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respectively) and the non-equidistantly sampled incomplete magnetic datasets (Figures 53a and 

b respectively). The data distance is numerically computed as 0.0827 which is almost seven 

times higher than in the 15% missing datasets. This is the maximum missing data percentage at 

which the inverse problem is completely overdetermined, as estimated by the over-

determination ratio of 852/625=1.3632.     

      Furthermore, the incomplete datasets with missing 60% of their total power are subjected 

to the inversion method resulting in the 2D amplitude spectrum and the pole reduction map as 

seen in Figures 58a and b respectively. In this case, the number of the data points employed is 

roughly 638, which is nearly close to the number of the model parameters (𝑀𝑥 𝑀𝑦=625), 

making our inverse problem at a marginal level of over-determination. As quantified by a very 

high distance value of 0.3160, it causes extreme distortion in the anomaly patterns and 

amplitudes of both the spectrum and the RTP magnetic map. According to these results, it may 

be stated that the inversion method's reconstructed 2D algorithm is effective, stable, and 

satisfactory for preprocessing incomplete magnetic datasets sampled at random and that it can 

be suggested to treat diverse data taken via other geophysical tools. 

 

Figure 58. a) The 2D IRLS-FT spectrum when 60% of the randomly sampled magnetic 

datasets are missing, b) The reduced-to-pole map using IRLS-FT when 60% of the randomly 

sampled magnetic datasets are missing. 

4.5.4. INCOMPLETE SAMPLING PROBLEM STUDIED ON NOISY MAGNETIC 

DATASETS  

      The incomplete sampling problem is examined on the same noisy magnetic datasets shown 

in Figure 35 to assess the efficacy and stability of the newly proposed 2D IRLS-FT inversion 

technique. For comparison, the same missing data percentages (15%, 25%, 35%, 45%, 50%, 

and 60%) are chosen.  
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4.5.4.1. Study on Regular Grid  

      Firstly, the inversion is performed on the noisy datasets sampled over a regular grid. Figures 

59a, b, c, d, e, and f show the 2D amplitude-frequency spectra at the above-mentioned 

percentages of the missing data respectively.  

 

Figure 59. The 2D IRLS-FT spectra when a) 15% of the regularly sampled noisy magnetic 

datasets are missing, b) 25% of the regularly sampled noisy magnetic datasets are missing, c) 

35% of the regularly sampled noisy magnetic datasets are missing, d) 45% of the regularly 

sampled noisy magnetic datasets are missing, e) 50% of the regularly sampled noisy magnetic 

datasets are missing, f) 60% of the regularly sampled noisy magnetic datasets are missing. 
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      In 15%,  25%, 35%, and 45% missing data cases, the total number of the measurements are 

1410, 1281, 1097, and 933 respectively, whereas 821 and 670 for 50% and 60% missing 

percentages are utilized respectively. The same order of Hermite function (Mx=My=25) is 

selected. The amplitude spectra derived when we randomly cancel 15%, 25%, 35%, and 45% 

of the observing points are extremely comparable to those obtained in the regularly sampled 

noise-free situation (Figures 48a, b, c, and d), verifying the inversion effectiveness. In 50% of 

missing data, the spectrum is satisfactory and substantially identical to that calculated in the 

noise-free datasets (Figure 50a). The noisy datasets illustrate the inversion limitations as 

displayed in the distorted spectrum due to the marginal over-determination ratio, similar to that 

produced with the noiseless data while missing 60% of the readings (Figure 50c).  

      The estimated 2D pole reduction anomaly maps using Eq. 91 are illustrated in Figures 60a, 

b, c, d, e, and f. The RTP magnetic anomaly maps nearly indicate the same results as established 

in the regularly sampled noise-free datasets (Figures 49a, b, c, d, 50b and d respectively). 

Numerically, very low data distance values are calculated as 0.0110, 0.0125 0.0238, and 0.0437 

for 15%, 25%, 35%, and 45% missing data respectively. In our case, the over-determination is 

dominant when 50% of the measuring points are cancelled, with its ratio calculated as 

821/625=1.3136. The data distance of 0.0716 is roughly seven times higher than that of the 

15% missing datasets but it is generally satisfactory. The extremely deformed RTP map while 

missing 60% of the observation points reveals that the inversion is not effective, as numerically 

indicated by the very high value of the data distance of 0.4133, similar to the noise-free 

sampling datasets.  

4.5.4.2. Study on Random Walk Sampling  

      Furthermore, we introduce the inversion findings in the case of random-walk sampling of 

the 2D noisy magnetic datasets. In that regard, 1435, 1272, 1065, 930, 860, and 635 measuring 

points are randomly selected to determine the 2D amplitude spectra when missing 15%, 25%, 

35%, 45%, 50%, and 60% (Figures 61a, b, c, d, e, and f respectively). When compared to those 

detected in regularly sampled noise-free datasets, it is proven that all spectra are substantially 

identical (Figures, 48a, b, c, d, 50a, and c respectively). In addition, Figures 62a, b, c, d, e, and 

f demonstrate similar results concerning the reduced-to-pole maps of randomly missing noisy 

magnetic datasets using IRLS-FT. When we compare the RTP maps estimated by the inversion 

method at 15%, 25%, 35%, and 45% missing data to those determined in the regular noise-free 

data (Figure 49a, b, c, and d, respectively), effective results and great similarities in anomaly 

shapes and amplitudes are attained, proving low data distance values (0.0235, 0.0317, 0.0467, 
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and 0.0654 respectively). The inversion still gives us acceptable results when half of the 

measuring points (50%) are executed with a data distance value of 0.0813, while the less over-

determination of the inverse problem when missing 60% of the observing points is kept 

unchanged as numerically evidenced by a higher data distance value of 0.3297. 

 

Figure 60. The reduced-to-pole maps using IRLS-FT when a) 15% of the regularly sampled 

noisy magnetic datasets are missing, b) 25% of the regularly sampled noisy magnetic datasets 

are missing, c) 35% of the regularly sampled noisy magnetic datasets are missing, d) 45% of 

the regularly sampled noisy magnetic datasets are missing, e) 50% of the regularly sampled 

noisy magnetic datasets are missing, f) 60% of the regularly sampled noisy magnetic datasets 

are missing. 

      According to these results, we can announce that the inversion-based FT is effective, stable, 

and robust in processing the noise-contaminated incomplete sampling datasets even when 50% 
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of the measuring points are neglected or lost as a maximum (The over-determination rate is 

860/625=1.376). These investigations-based noise contamination show again the new (and 

economically meaningful) possibility in planning field measurements: the number of 

measurement points can be reduced before reaching an acceptable inaccuracy in determining 

the RTP map. 

 

Figure 61. The 2D IRLS-FT spectra when a) 15% of the randomly sampled noisy magnetic 

datasets are missing, b) 25% of the randomly sampled noisy magnetic datasets are missing, c) 

35% of the randomly sampled noisy magnetic datasets are missing, d) 45% of the randomly 

sampled noisy magnetic datasets are missing, e) 50% of the randomly sampled noisy 

magnetic datasets are missing, f) 60% of the randomly sampled noisy magnetic datasets are 

missing. 
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Figure 62. The reduced-to-pole maps using IRLS-FT when a) 15% of the randomly sampled 

noisy magnetic datasets are missing, b) 25% of the randomly sampled noisy magnetic 

datasets are missing, c) 35% of the randomly sampled noisy magnetic datasets are missing, d) 

45% of the randomly sampled noisy magnetic datasets are missing, e) 50% of the randomly 

sampled noisy magnetic datasets are missing, f) 60% of the randomly sampled noisy magnetic 

datasets are missing. 

 

According to the results demonstrated above, I declare thesis statement 2 as follows: 

Thesis 2 

In the field of pole reduction of magnetic data, I gave an extended analysis of the 2D IRLS-FT 

method with regard to the outlier sensitivity, the non-regular sampling, and the missing data 
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problems in a numerical example containing 41x41 measurement points and 25x25 unknown 

expansion coefficients.  

Studying the missing data problem on noise-free and Cauchy noise-contaminated datasets 

(containing outliers), I found that in the case of regularly sampled, non-regularly sampled, and 

random-walk datasets, increasing the ratio of the missing data up to 50%, the accuracy of the 

pole reduced magnetic map is acceptable, while at higher ratios (when the over-determination 

rate is below 1.3) the results are highly distorted. 
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Chapter 5 

GRAVITY DATA PROCESSING USING THE 2D IRLS-FT METHOD 

 

5.1. AN OVERVIEW OF THE GRAVITY SURVEYING METHOD 

      The gravitational method is based on the measurement of gravity field changes due to 

horizontal and vertical density variations in the subsurface. The gravity method is preferred by 

many geophysicists due to several advantages where it is considered one of the cheapest 

geophysical tools and a way of remote sensing that is non-invasive and non-destructive. 

Besides, it is a passive geophysical exploration approach, in the sense that the phenomenon 

whose effect is measured is natural, so there is no need to produce it. Because of the large 

variation of densities among rock types, assumptions concerning stratum distribution can be 

made. For more details about the densities of several rocks and ore minerals, some geophysical 

books are available such as (Dobrin, 1976; Sharma, 1997; Milsom, 2003). Like other 

geophysical tools, the gravity method has a wide range of applications. For many issues 

involving surface mapping, it is an important technique and is the principal method for several 

specific geological study types. It can be used for regional petroleum exploration, mineral 

prospecting, geotechnical and archaeological investigations, environmental applications, and 

also to find out how deep the bedrock is, and the top of the source rock bodies (Roy, 1966; 

Nettleton, 1976; Ateya and Takemoto, 2002; Fedi, 2007; Lafehr and Nabighian, 2012; Hinze et 

al, 2013; Essa, 2014 and Luan Thanh Pham et al, 2021). In addition, it can be used in 

groundwater exploration and to detect structural trends controlling the regional geometry of the 

groundwater aquifers (Murty and Raghavan, 2002).  

      Furthermore, there are several types of gravity instrumentation (gravimeters) that can be 

involved to measure the changes in the vertical component of the gravity field. For accurate 

data collection, the gravimeters should be sensitive enough to be able to determine the earth's 

gravity field up to one part in a hundred million. Low mass, low volume, low power demand, 

safe operation, and ruggedness and reliability of the geophysical gravimeters are all 

requirements for human exploration of the solar system (Meyer et al., 1995; Hoffman, 1997; 

Budden, 1999). However, before the gravitational data interpretation, all the observing points 

have to be corrected to overcome the gravitational ambiguity problems associated with data 

interpretation. This can be done by removing all the unknown effects that are not connected to 

variations in subsurface density. Data processing includes corrections for drift, tide, free-air, 

Bouguer, latitude, and terrain. The processing and interpretation procedures of the gravity field 

https://www.researchgate.net/profile/Luan-Pham-2
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datasets have been found in several works of literature (Reynolds, 1997; Kearey et al, 2002; 

Milsom, 2003; Hinze et al, 2013). The gravity interpretation data can be then displayed as a 

map called the Bouguer anomaly contour map or along 2D profiles, illustrating the lateral 

variation in the underlying rock densities. 

5.2. SPECTRAL LOW-PASS FILTERING TECHNIQUE 

      The gravitational data processing can be achieved by using numerous spectral filtering 

methods based on Fourier transform. Removing or suppressing the noise through the spectral 

data analysis is highly recommended compared to the digital data analysis in the space domain 

due to its flexibility, wider application, effectiveness for larger data sets, and lower edge effects 

(Hinze et al, 2013). These spectral filtering methods play a vital role in geophysical data 

processing because they help to isolate the responses of near-surface sources of interest that are 

embedded in deeper regional ones of widespread extension. Therefore, a simple low-pass 

filtering technique is used in our study as a geophysical application for gravity data processing. 

Generally, in the low-pass or high-cut filter, signals with frequencies lower than a selected 

cutoff frequency are passed (passband), while frequency signals over the cutoff value are 

suppressed (stopband). In gravity data processing, low-pass filtering is utilized to allow low 

wavenumber or long-wavelength components produced by deep gravitational sources 

(regional) to pass, while rejecting higher wavenumber or short-wavelength components 

associated with local shallow sources (residuals), resulting in a regional gravity anomaly map. 

This process can be performed depending on the cut-off frequency value accuracy selected from 

the 2D Fourier amplitude spectrum. Our present investigation analyzes the 2D synthetic noise-

free and noisy gravitational datasets taken over equidistant and random sampling grids. In the 

framework of the low-pass filtering, a new practical geophysical applicability of both 2D DFT 

and 2D IRLS-FT approaches are implemented on such datasets to evaluate their noise reduction 

capabilities as well as to test the IRLS-based inversion efficiency in solving the incomplete 

sampling problems.  

5.3. THE GRAVITATIONAL FIELD OF A RECTANGULAR PRISM  

5.3.1. MATHEMATICAL SOLUTION OF THE PROBLEM 

      In this section, the mathematical expressions for estimating the vertical component of a right 

rectangular prism's gravitational attraction are presented. The right rectangular prisms assume 

that their edges are parallel to the coordinate system, unlike those of polygonal ones. The 

derivation of the gravitational field produced by a right rectangular prism has been explained 
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by many people (e.g. Nagy, 1966; Shuey and Pasquale, 1973; Rasmussen and Pedersen, 1979; 

Cady, 1980). Sir Isaac Newton (1687) derived two laws that serve as the foundation for the 

gravity method. The first namely Newton's universal law of gravitation states that the attraction 

force (𝐹) between the two bodies is directly proportional to the product of their masses, and 

inversely proportional to the square of the distance between their centers. Thus, if we consider 

a given mass 𝑀 (prismatic body) at a point (𝑥, 𝑦, 𝑧) is acting on a proof mass 𝑚 located at a 

measuring point 𝑂 = (𝑥0, 𝑦0, 𝑧0) as shown in Figure 63, the magnitude of the attraction force 

in the Cartesian coordinate system is defined by: 𝐹 = 𝐺 𝑀 𝑚𝑟2 ,                                                              (92) 

where 𝐺 is the universal gravitational constant, which has a value of 6.67 x 10-11 m3 Kg-1 S-2 in 

the International System of Units (SI) and 𝑟 is the distance between the two masses as follows: 𝑟 =  [(𝑥0 − 𝑥)2 + (𝑦0 − 𝑦)2 + (𝑧0 − 𝑧)2]12.                                 (93) 

 

Figure 63. Model for calculating the vertical component of a right rectangular prism's 

gravitational acceleration at a measuring point 𝑂 (modified after Karcol and Pašteka, 2019).    

      On the other hand, the Newton's Second Law of Motion states that the force (𝐹) equals the 

product of acceleration and mass (𝐹 = 𝑚. 𝑔), then the final product of the gravitational 

acceleration caused by a mass 𝑀 on a proof mass 𝑚 at the measuring point 𝑂 is given by: 𝑔(𝑂) = −𝐺 𝑀 𝑟2 �̂�,                                                           (94) 
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where �̂� is the unit vector at observation point 𝑂 that is oriented to mass 𝑀 in the direction 

opposite to the field, and hence a negative sign is present. Following the Helmholtz theorem 

(Blakely, 1996), the potential field is irrotational, thus the gravitational acceleration is a 

conservative field which can be then indicated as the gradient of a scalar potential 𝑔(𝑂) =−∇𝑈(𝑂). Consequently, the gravitational  potential at the point 𝑂 can be written as follows: 

   𝑈 (𝑂) = 𝐺 𝑀𝑟 .      (95) 

      It is important to note that the gravitational potential follows the principle of superposition. 

This means that the gravitational potential of a group of masses is equal to the total of each 

mass's gravitational attraction. As a result, the net force acting on a proof mass is just the vector 

sum of all the forces produced by all the masses in the vicinity of the proof mass. By this 

principle, the value of 𝑈 due to the body composed of 𝑁 elements of mass ∆𝑀𝑗 can be estimated 

approximately according to the following formula: 𝑈(𝑂) ≈ 𝐺 ∑  ∆𝑀𝑗r𝑗𝑁𝑗=1 .                                                   (96) 

      Moreover, ∆𝑀 can be replaced by 𝑑𝑀 which is a product of the distribution of the density 

in the body 𝜌 (𝑥, 𝑦, 𝑧) and the body volume (𝑑𝑣). Using an integral instead of a sum in Eq. 96, 

the gravitational potential for distribution of constant density can be defined as:          𝑈(𝑂) = 𝐺𝜌 ∫ 1𝑟  𝑑𝑣𝑉 .                                                  (97) 

      The gradient 𝑔(𝑂) = −∇𝑈(𝑂) described above can be moved inside the integral in case of 

a continuous and finite function of the integrated value and its derivatives within the integration 

region. For example, the partial vertical derivative of 𝑈 can be defined as:  

𝜕𝑈(𝑂)𝜕𝑧 = −𝐺𝜌 ∫ 𝜕𝜕𝑧 (1𝑟)  𝑑𝑣𝑉  = 𝐺𝜌 ∫ (𝑧0−𝑧)𝑟3𝑉  𝑑𝑣,                            (98) 

with 𝑧0 = 0 at the surface. For variables 𝑥 and 𝑦, similar expressions are found. It is critical to 

note that when dealing with bodies of different geometries such in our case (prismatic body), 

the coordinate system has to be separated in order to convert the integral of volume to the 

surface one. This can be achieved by using the Cartesian coordinate system (𝑑𝑣 = 𝑑𝑥 𝑑𝑦 𝑑𝑧). 

Therefore, the vertical component of the gravitational acceleration can be given as: 𝑔𝑧 = 𝐺𝜌 ∫ ∫ ∫ 𝑧𝑑𝑧𝑑𝑦𝑑𝑥𝑟3𝑧2𝑧1𝑦2𝑦1𝑥2𝑥1 ,                                               (99) 
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where 𝑥𝑖 , 𝑦𝑖  , and  𝑧𝑖 are the prism's corners as shown in Figure 63. Plouff (1976) presented a 

solution to this integral for prisms with polygonal horizontal sections, while in the present case 

of the rectangular prism or L-sided polygon, the integral's solution was detailed by (Nagy, 1966) 

and given by (Blakely, 1996) as the following: 

𝑔𝑧 = 𝐺𝜌 ∑ ∑ ∑ 𝜇𝑖𝑗𝑘  [𝐶𝑘 𝑎𝑟𝑐𝑡𝑎𝑛 ( 𝐴𝑖𝐵𝑗𝐶𝑘𝑅𝑖𝑗𝑘) − 𝐴𝑖 ln(𝑅𝑖𝑗𝑘 + 𝐵𝑗)− 𝐵𝑗 ln(𝑅𝑖𝑗𝑘 + 𝐴𝑖)]2𝑘=12𝑗=12𝑖=1 ,   (100) 

where 𝐴𝑖 = (𝑥0 − 𝑥𝑖), 𝐵𝑗 = (𝑦0 − 𝑦𝑗), and 𝐶𝑘 = (𝑧0 − 𝑧𝑘) is the distance from the 

measuring point 𝑂 to each corner of the prismatic body, 𝑅𝑖𝑗𝑘 = √𝐴𝑖2 + 𝐵𝑗2 + 𝐶𝑘2, and 𝜇𝑖𝑗𝑘 = (−1)𝑖 (−1)𝑗 (−1)𝑘. This formula in Eq. 100 is used for the forward modeling and computing 

of the vertical component of the gravitational acceleration produced by a prism with arbitrary 

dimensions and density. 

5.3.2. SYNTHETIC 2D GRAVITY DATA GENERATION 

      In order to test the noise reduction capability of both traditional Fourier transformation and 

the inversion-based Fourier transformation methods, synthetic datasets are constructed. A 

forward gravity modeling example produced by a right rectangular prism using Eq. 100  is 

presented in our investigation. The distances are in meters (m), the density is in g/cm3 and the 

data of gravity are in mGal. For calculating an anomaly in a 2D density distribution, the 

subsurface is divided into rectangular cells with a side of the x-axis equal to the distance 

between two measuring stations. This example shows a prism inserted into the center of an area 

extending from -20 to +20 meters, which is represented in x and y directions by 40 by 40 

rectangular cells spaced by 1 m as shown in Figure 64a. The prism can be specified by several 

particular parameters including width (Wx) in the x-direction, length (Wy) in the y-direction, 

thickness (Wz) in the z-direction, depth, centre coordinates, and density as described in Figure 

63. In the present study, a prism with a centre is assumed to be 5 m deep, 10 m wide and long, 

and 5 m thick. To solve the edge effects problem, the prism is given a density of 1 while the 

background density is set to 0. The responses collected in x and y directions on the surface, 

spaced by 1 m, centred on the prism's top, produced 1681 points of observation, and then the 

forward matrix consisted of 41 columns and 41 rows. Figure 64b shows the 2D gravity anomaly 

of the rectangular prism mentioned. The data generated can then be randomly contaminated 

with noise for real data simulation. 
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Figure 64. a) Model showing the location of the rectangular prism in the subsurface and the 

distribution of the surface measuring stations, b) 2D gravity anomaly produced by the 

rectangular prism. 

5.4. REDUCING THE GRAVITATIONAL OUTLIER SENSITIVITY IN 2D IRLS-FT 

      For processing 2D magnetic data in the field of pole reduction, Dobróka et al. (2017) used 

both conventional Fourier transform (DFT) and inversion-based 2D Fourier transform (2D 

IRLD-FT) methods, as discussed in Chapter 4. Following up on the previous work, we deal 

with a new geophysical tool of gravity method to introduce the inversion efficiency and 

stability. Therefore, the new applicability of two approaches concerning gravitational datasets 

is presented. The outlier sensitivity is evaluated on the 2D synthetic gravity datasets mentioned 

above. The spectral low-pass filtering technique is used as a new practical branch in both cases 

of the equidistantly and non-equidistantly sampled gravity datasets. 

5.4.1. APPLICABILITY TO THE EQUIDISTANTLY SAMPLED DATASETS 

5.4.1.1. 2D Numerical Investigation 

      Noise-free and noisy equidistantly sampled gravity datasets are constructed to assess the 

efficiency and noise reduction capability of the two approaches. Figure 65 depicts the surface 

observation locations (N=41x41) spread consistently over the investigated area with intervals 

of 1 m in the x and y directions. 
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Figure 65. The regular grid of the measuring gravity stations. 

      The rectangular prism's 2D Bouguer gravity anomaly map is built by contouring all of the 

data gathered at these measuring stations (Figure 64b), exhibiting comparatively high and low 

gravity anomalies. In Figure 66, we can see a 3D visualization of the measured two-dimensional 

noise-free gravity datasets that vary in magnitude from 0 to 12x10-3 mGal. 

 

Figure 66. 3D view of the noise-free Bouguer gravity data for the regularly sampled grid. 

      The noise-free gravity datasets are then converted from the space domain to the frequency 

domain using the Fourier transform algorithms. Figure 67 demonstrates the 2D amplitude 

spectrum of the conventional DFT method, which is inserted in an area ranging from -0.5 to 0.5 

in the x and y directions to obtain an appropriate scale in the wavenumber domain. 
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Figure 67. The 2D amplitude spectrum of the noise-free gravity data using the DFT method.  

      For our purposes of testing the noise suppression capacity of the two approaches, the above-

mentioned 2D noise-free synthetic gravity data generated with an equidistantly sampled grid 

(Figure 66) is contaminated with random noise of the Cauchy distribution using a scale 

parameter of 0.02 as shown in Figure 68 by a 3D view of the noisy Bouguer gravity field. 

 

Figure 68. 3D view of the noisy Bouguer gravity data for the regularly sampled grid. 

      It is seen that the noisy 2D gravity data is deformed and distorted in both anomaly shapes 

and amplitudes when compared to noise-free datasets (Figure 66). The result is that gravity 

values appear to be quite random. Similarly, the noisy gravity datasets are treated with the 

traditional DFT technique, which produces a two-dimensional Fourier amplitude spectrum, as 
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illustrated in Figure 69. As can be seen, the spectrum of the noisy data produced by the 

traditional method is completely deformed when compared to that of the noise-free datasets 

(Figure 67), illustrating that the DFT method is extremely sensitive to the added noise. 

 

Figure 69. The 2D amplitude spectrum of the noisy gravity data using the DFT method. 

 

      Due to the limited noise reduction capability of the 2D DFT method, as demonstrated above 

by its Fourier spectrum, especially in Cauchy noise situations, the inversion-based Fourier 

transformation (2D IRLS-FT) method is used to compare and test how successful and effective 

the inversion procedure is on the same noisy datasets. The estimated two-dimensional 

amplitude Fourier spectrum utilizing the inversion-based method is introduced in Figure 70. 

The results show sufficient improvements, as evidenced by the spectrum of the inversion-based 

FT approach (Figure 70) as well as eliminating the problem of outliers effects associated with 

the DFT spectrum (Figure 69) to be nearly identical to that achieved for the noise-free gravity 

datasets (Figure 67). Hence, Hermite functions of order Mx=My=25 were chosen as an inversion 

parameter utilizing series expansion to estimate the 2D IRLS-FT spectrum for a compromise 

between accuracy and stability of the inversion procedure. 
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Figure 70. The 2D amplitude spectrum of the noisy gravity data using the IRLS-FT method. 

      To quantify the misfit between noisy and noise-free datasets, RMS computations are 

assessed. The following equation is used to calculate the distance between noisy and noiseless 

data in the space domain: 

𝑑 =  √1𝑁  ∑ ∑ [𝑢𝑛𝑜𝑖𝑠𝑒𝑙𝑒𝑠𝑠(𝑥𝑖  , 𝑦𝑗) − 𝑢𝑛𝑜𝑖𝑠𝑦(𝑥𝑖 , 𝑦𝑗)]2𝑁𝑦𝑗=1𝑁𝑥𝑖=1 ,                      (101) 

where 𝑁 = 𝑁𝑥𝑁𝑦, 𝑁𝑥 and 𝑁𝑦 are the associated numbers of the 2D examination area's space 

points. As an alternative, the frequency domain model distance between spectra can be 

estimated using the following equation:  𝐷 =  [1𝑀  ∑ ∑ (𝑅𝑒[𝑈𝑛𝑜𝑖𝑠𝑦(⍵𝑥𝑖 , ⍵𝑦𝑗)] −  𝑅𝑒[𝑈𝑛𝑜𝑖𝑠𝑒𝑙𝑒𝑠𝑠(⍵𝑥𝑖 , ⍵𝑦𝑗)])2 +𝑀𝑦𝑗=1𝑀𝑥𝑖=1 1𝑀  ∑ ∑ (𝐼𝑚[𝑈𝑛𝑜𝑖𝑠𝑦(⍵𝑥𝑖 , ⍵𝑦𝑗)] −  𝐼𝑚[𝑈𝑛𝑜𝑖𝑠𝑒𝑙𝑒𝑠𝑠(⍵𝑥𝑖  , ⍵𝑦𝑗)])2𝑀𝑦𝑗=1𝑀𝑥𝑖=1 ]12
,      (102) 

where 𝑀 = 𝑀𝑥𝑀𝑦, 𝑀𝑥 and 𝑀𝑦 are the 2D test area's frequency points. In that regard, the 

calculated distance between Cauchy noise-contaminated data and noise-free data is d=0.0027. 

Moreover, the noiseless spectrum (Figure 67) and the noisy spectrum obtained by the DFT 

method (Figure 69) are separated by a model distance of D= 0.0995, whereas the estimated 

value for the noisy spectrum produced by the inversion (IRLS-FT) method (Figure 70) has a 

model distance of D= 0.0133. These numerical distances demonstrate the applicability and the 

improved noise reduction capability of the inversion-based Fourier transformation algorithm. 
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      The effectiveness and efficiency of the inversion method are further demonstrated by the 

results of the 2D inverse Fourier transformation. This phase converts the data from the 

frequency domain to the space domain to estimate the calculated data (inverted model). Figures 

71 and 72 show the 2D inverse Fourier transformation of the noisy amplitude spectra produced 

by DFT and 2D IRLS-FT approaches, respectively. A thorough analysis of these maps reveals 

that the inverted model of the equidistantly sampling noisy gravity data obtained by the DFT 

approach (Figure 71) is the same as the noisy measured data (Figure 68) in terms of anomaly 

shapes and amplitudes, as it is expected. The added Cauchy noise that simulates outliers remains 

unchanged without any advancements. This is also shown by the fact that the data distance used 

to calculate the misfit between the noise-free measured data (Figure 66) and the result of the 

inverse Fourier transform (IDFT) method (Figure 71) is d=0.0027. As a result of the lower 

resolution as well as the increment in data distance value, the DFT method is not optimal and 

has a limited noise reduction capability whenever noisy data that contains outliers are available. 

In contrast, the quality of the inversion-based Fourier transform of the noisy 2D IRLS-FT 

spectrum (Figure 72) has been considerably enhanced with satisfactory improvements and is 

close to the noise-free Bouguer gravity datasets (Figure 66). This can also be proved 

quantitatively by its distance from the noise-free data (d= 0.00032) which is much less than the 

distance calculated previously between the noiseless and Cauchy noise-contaminated data. 

 

Figure 71. 3D view of the noisy calculated gravity data using the inverse DFT method. 
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Figure 72. 3D view of the noisy calculated gravity data using the inverse IRLS-FT method. 

      Based on these findings, it can be concluded that the inversion-based Fourier transform 

method applied in our study is highly effective, robust and provides roughly an order of 

magnitude better noise suppression capabilities in both terms of space and frequency domains 

than the DFT method, even when data is contaminated with complex noise such as outliers. 

5.4.1.2. Low-pass Filtering Applicability 

      In this study, the low-pass filter is performed mathematically by multiplying the two-

dimensional input data in the frequency domain by an appropriate filter function as introduced 

in the equation below: 𝐹(𝑢, 𝑣) = 𝐷(𝑢, 𝑣) 𝑅(𝑢, 𝑣),                                                  (103) 

where 𝐹(𝑢, 𝑣) is the 2D filtered data in the frequency domain, 𝐷(𝑢, 𝑣) is the 2D Fourier 

transformed input data set, and 𝑅(𝑢, 𝑣) is the filter function. In our present investigation, we 

use a Butterworth filter (Ellis, 2012; Thompson, 2013; Al Hinai, 2020) 

1/2

2 2( , ) (1 ( ) )(1 ( ) )N N

c c

u vR u v
u v


      ,                                    (104) 

with the cut-off frequencies of 0.125
c c

u v   [1/m] and the filter order of N=10. The filtered 

data is subsequently returned to the space domain through the inverse Fourier transformation. 

To test and compare the noise reduction capabilities of both 2D DFT and 2D IRLS-FT 

approaches, the same noise-free and noisy data sets presented in Figures 66 and 68 respectively 
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are subjected to low-pass filtering. Figure 73 displays the low-pass filtered 3D noise-free 

regional gravity anomaly map by the conventional Fourier transformation (DFT) method. 

 

Figure 73. 3D view of the noise-free regional gravity anomaly data (low-pass filtered data) 

using the DFT method. 

      The regional map with high amplitudes and low frequencies can be seen to represent a 

strong, broad, and great extension of gravity anomalies over the tested area. The low-pass 

filtering algorithm using the DFT method is then applied to the Cauchy noise-contaminated 

data (Figure 68) resulting in a 3D noisy regional gravity anomaly map as shown in Figure 74. 

 

Figure 74. 3D view of the noisy regional gravity anomaly data (low-pass filtered data) using 

the DFT method. 
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      It is noticed that the noisy map for regional gravity anomalies is distorted in both anomaly 

shapes and amplitudes. The inability of handling the problem of outlier effects reflects the 

limited noise reduction capacity of the 2D DFT method, which is also proven by a higher value 

of the mean data distance of 0.3752 compared to that of the 3D noise-free regional anomaly 

map estimated by the DFT method (Figure 73). On the other hand, the 3D noisy regional gravity 

anomaly map produced by the low-pass filtering based on the 2D IRLS-FT method shows 

sufficient improvements as seen in Figure 75.  The result is close to that given by DFT in the 

case of filtering the noise-free data set showing a low data distance value of 0.0234. 

 

Figure 75. 3D view of the noisy regional gravity anomaly data (low-pass filtered data) using 

the IRLS-FT method. 

      As proved above, when compared to the noisy regional gravity anomaly map produced by 

the traditional DFT method in Figure 74, the results obtained using the inversion-based Fourier 

transformation method are extremely satisfactory and demonstrate sufficient enhancements in 

both anomaly shapes and amplitudes. In addition, the inversion-based Fourier transformation 

method used in this study has solved the outlier effect problem to be somewhat similar to that 

of the noise-free regional gravity anomaly map (Figure 73). These results are sufficient to 

demonstrate the inversion-based Fourier transformation 2D IRLS-FT method's applicability, 

efficiency, and noise reduction capability. 

5.4.2. APPLICABILITY TO THE NON-EQUIDISTANTLY SAMPLED DATASETS 

      Since the 2D DFT and FFT methods are traditionally used for processing the geophysical 

data sampled equidistantly as well as their inaccuracy or non-applicability with the non-
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equidistant grid intervals, we only employ the inversion-based filtering approach; the iteratively 

reweighted least-squares Fourier transformation (2D IRLS-FT), to random walking gravity 

measurements. The concept of the random walk measuring was detailed in chapter 4 for 2D 

magnetic data processing. To assess the noise rejection capacity, the non-equidistant sampling 

gravity measurements are then contaminated with Cauchy distributions' random noise 

simulating real data. The algorithm of the above-mentioned inversion-based Fourier 

transformation is applied to both non-equidistantly sampled noisy and noise-free 2D synthetic 

gravity datasets, providing practical effectiveness in the framework of the low-pass filtering. 

5.4.2.1. 2D Numerical Investigation 

      To meet our main objective and to verify the performance of the previously indicated 

inversion method, the same model of the right rectangular prism indicated above in Figure 64 

is used to generate irregular or random gravity datasets. The model is initially applied along 

with a regular grid before being randomized to produce non-equidistantly sampled intervals. 

The observation points are positioned 1 meter apart in the x and y directions (1681 readings) to 

emulate the subsurface which is divided into 40 by 40 rectangular cells. Figure 76a shows the 

gravity anomaly in a 2D contour map made from a regular grid which is then used to obtain a 

non-equidistantly 2D gravity anomaly contour map, as seen in Figure 76b. In comparison to 

that obtained with equidistantly sampled data, the contour map of the 2D gravity anomaly in 

the case of non-equidistant intervals is considerably deformed in shape, revealing an irregular 

surface and does not cover the whole tested area. 

 

Figure 76. a) 2D gravity anomaly produced by equidistantly sampled measurements, b) 2D 

gravity anomaly produced by non-equidistantly sampled measurements. 



CHAPTER 5 
 

96 

 

      In our case, the random walk measuring design can be constructed by arranging all y 

coordinates to all x locations. Figure 77 depicts a non-equidistantly sampled grid of 41x41 

surface measuring points generated by randomly chosen x and y positions. 

 

Figure 77. The non-equidistant grid of the measuring gravity stations. 

      First, the inversion-based Fourier transformation method is applied to the 2D noise-free 

synthetic gravitational datasets illustrated above in Figure 76b. To make interpretation 

processes easier, such datasets are displayed in a three-dimensional (3D) manner, as shown in 

Figure 78. It is observed that the base of the rectangular prism's 2D Bouguer gravity anomaly 

map is characterized by rectangular blocks of random distributions in x and y directions 

reflecting the non-equidistantly sampling. 

 

Figure 78. 3D view of the noise-free Bouguer gravity data sampled non-equidistantly. 
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      After converting the space domain noise-free Bouguer gravity data (Figure 78) to the space-

frequency domain using our inversion-based Fourier transformation algorithm, we get a 2D 

amplitude Fourier spectrum of the non-equidistant noise-free datasets, as shown in Figure 79. 

 

Figure 79. 2D IRLS-FT spectrum of the noise-free gravity data sampled non-equidistantly. 

      Here, the 2D IRLS-FT spectrum is estimated using series expansion with Hermite functions 

of order M=25 in both x and y-direction. Two-dimensional noisy gravity datasets are then 

constructed to access the applicability of the proposed inversion-based Fourier transformation 

algorithm. To generate 2D Bouguer gravity data-based Cauchy noise, we utilize a scale 

parameter of 0.02 as presented in Figure 80.  

 

Figure 80. 3D view of the noisy Bouguer gravity data sampled non-equidistantly. 
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      It can be demonstrated that the outlier effects are readily visible in the noisy gravity data 

sets which is a crucial step in simulating real data in the field. For quantitative interpretation, 

the generated models can be evaluated mathematically by calculating the misfit between the 

noisy and noise-free datasets using Eq.101 indicated above. The outlier sensitivity is shown by 

the estimated value of the data distance between the noiseless (Figure 78) and the Cauchy noise-

contaminated data (Figure 80) being d=0.0027. To compare the inversion method's 

applicability to that of noise-free gravity datasets, the noisy 2D gravity data (Figure 80) are 

subjected to the inversion algorithm, which produces a 2D amplitude Fourier spectrum of the 

non-equidistant noisy datasets as shown in Figure 81. 

 

Figure 81. 2D IRLS-FT spectrum of the noisy gravity data sampled non-equidistantly. 

      It is seen that the 2D amplitude Fourier spectrum produced by the inversion approach in the 

presence of Cauchy noise is nearly identical to that obtained in the noise-free situation. This is 

evident in both anomaly shapes and amplitudes exhibiting the same values to vary from 0.2 to 

1.4. The same order of the Hermite functions Mx=My=25 was selected as an appropriate 

parameter in the inversion. In addition to the visual findings, the inversion method's efficiency 

may be numerically verified in the frequency domain by computing the model distance between 

spectra as explained earlier in Eq. 102. In this regard, D=0.0129 was calculated as the model 

distance between the 2D IRLS-FT spectra of noise-free (Figure 79) and noisy (Figure 81) 

gravity data. This low model distance value indicates the inversion-based Fourier 

transformation algorithm's efficiency as well as its superiority in reducing gravitational data 

noise. In contrast, the inverse Fourier transform is applied to convert the data from the space-

frequency domain to the space domain. Figure 82 shows the inverted space domain model 
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(calculated data) produced by the inverse Fourier transformation of the non-equidistantly 

sampling noisy spectrum presented above in Figure 81. 

 

Figure 82. 3D view of the inverse IRLS-FT noisy calculated Bouguer gravity data. 

      It is observed that the inverted model-based Cauchy noise (Figure 82) by the 2D IRLS-FT 

method is found to be virtually similar to the gravitational forward model of noise-free datasets 

(Figure 78). One of the most noteworthy features of our inversion-based Fourier transformation 

approach, when applied to non-equidistantly sampled datasets, is that the inverted model 

returned as we would measure along with a regular sampling grid while maintaining the 

anomaly shapes and amplitudes unchanged. This is evident in the regular spacing of all 

rectangular blocks at the base of the inverted model in x and y directions to be nearly similar to 

that of the regularly sampled noise-free datasets (Figure 66). In addition, the problem arising 

from outlier effects (Figure 80) was resolved, and all undesired noise signals were eliminated. 

Furthermore, the misfit between the 2D IRLS-FT noisy calculated Bouguer gravity data (Figure 

82) and noise-free datasets (Figure 78) is d=0.00030 which is markedly less than the estimated 

value obtained for the noiseless versus Cauchy noise-contaminated data. This implies that the 

inversion-based Fourier transformation used in this study is highly effective in both the space 

and frequency domains, as well as in terms of application and robustness when dealing with 

noisy data like outliers collected on non-equidistant or irregular grids. 

5.4.2.2. Low-pass Filtering Applicability 

      Similarly to that applied to the equidistantly sampled gravity datasets, the low-pass filtering 

technique is implemented on the non-equidistant measuring data points to demonstrate how 
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successful the proposed inversion is. Employing Eq. 103 and Eq. 104 described above, the 

regional gravity anomaly map is the cumulative outcome of this filtering, and it must be built 

using a proper cutoff frequency value selected from the 2D Fourier amplitude spectrum. Hence, 

we evaluated the noise reduction capacity of the inversion-based Fourier transformation 

approach by applying cutoff frequencies 𝑢𝑐 = 𝑣𝑐 = 0.125 [1/m] and a filter order of N=10 to 

both non-equidistantly noiseless and noisy gravitational datasets. Figure 83 shows the regional 

gravity anomaly map in 3D after applying the low-pass filtering-based inversion to the noise-

free Bouguer gravity data illustrated above in Figure 78. The obtained 3D regional gravity 

anomaly map is characterized by a low data distance value of 0.0268 when compared to that 

calculated by the DFT approach in the noise-free equidistantly sampled datasets (Figure 73). 

Intensive, and widespread extension of gravity anomalies over the tested area may be noticed 

on the regional map with high amplitudes and low frequencies.  

      The Cauchy noise-contaminated data distributed over a non-equidistant grid (Figure 80) are 

then treated with low-pass filtering based on the 2D IRLS-FT method. The three-dimensional 

(3D) noisy regional gravity anomaly map is presented in Figure 84. It is seen that in the case 

of Cauchy noisy data, the filtered data of the regional gravity anomalies produced by the 

inversion method (Figure 84) is the same as the non-equidistantly noiseless regional gravity 

anomaly map (Figure 83) in anomaly shapes and amplitudes, overcoming the outlier effect 

problem with a low data distance value of 0.0287.  

 

Figure 83. 3D view of the IRLS-FT noise-free regional (low-pass filtered) gravity anomaly 

data sampled non-equidistantly. 
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      In addition, it is identical to those produced by both the DFT and IRLS of the regularly 

sampled noise-free and noisy data (Figure 73 and Figure 75 respectively). These findings 

indicate that the inversion-based FT method employed in our investigation is highly applicable 

with non-equidistantly sampling procedures, and thus we can confidently recommend it for 

dealing with real field data measurements sampled either over equidistant or non-equidistant 

grids. 

 

Figure 84. 3D view of the IRLS-FT noisy regional (low-pass filtered) gravity anomaly data 

sampled non-equidistantly. 

 

According to the results demonstrated above, I declare thesis statement 3 as follows: 

Thesis 3 

I developed a new filtering procedure (low-pass filtering) based on the 2D IRLS-FT method 

and applied it to gravity data. I constructed a model of a right rectangular prism to generate 2D 

synthetic gravity datasets which are initially created over an equidistant grid before being 

randomized to provide a random-walk sampling design. In my calculations, the inversion 

procedures are executed using Hermite functions of order Mx=My=25 as an inversion parameter 

for a compromise between estimation accuracy and stability. According to the results on both 

space and frequency domains, I proved that the inversion-based filtering procedure has a highly 

reduced outlier sensitivity in the cases of regular and random-walk sampled datasets. 
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5.5. TESTING THE INCOMPLETE SAMPLING PROBLEM IN 2D 

      The economic significance of our inversion in solving the issues made from statistics 

lacking or misplaced at some stage in the sector survey inspired us to maintain our 

investigations and supply a comprehensive image of ways the delivered inversion professional 

is. As discussed in the previous chapter of the 2D magnetic data processing, the incomplete 

sampling problem is evaluated by the IRLS-based inversion on two-dimensional synthetic 

gravity datasets in accordance with low-pass filtering. This is also to ensure that our inversion 

approach is highly effective to treat this kind of data sampling scheme and to improve the 

various data sets obtained by other geophysical methods. Therefore, equidistantly and non-

equidistantly (randomly) sampled incomplete gravity datasets are subjected to the inversion 

method. To achieve such an aim, the two mentioned sampling configurations are evaluated 

using both noise-free and noisy datasets. 

5.5.1. INCOMPLETE GRAVITY DATASET WITH EQUIDISTANT SAMPLING 

5.5.1.1. Noise-free Equidistantly Sampled Gravity Datasets 

      The same noise-free equidistantly sampled gravity datasets taken over 1681 measurements 

(Figure 66) are subjected to the inversion algorithm at the same missing percentages of the 

magnetic methodology (15%, 25%, 35%, 45%, 50%, and 60%), revealing the related 2D 

amplitude-frequency spectra in Figures 85a, b, c, d, e, and f respectively. In our examples, 

Hermite functions of order Mx=My=25 are used. The total number of the measurements is 

randomly selected through the inversion procedure to be 1411, 1269, 1097, and 918 for 15%, 

25%, 35%, and 45% missing data cases respectively, while 845 and 656 are constructed for 

50% and 60% cases respectively.  

      It is seen that the estimated spectra for 15%, 25%, 35%, and 45% are virtually the same as 

those obtained by both the DFT and IRLS of the equidistantly sampled complete datasets 

(Figures 67 and 70 respectively). In addition, the spectrum derived when 50% of the measuring 

points are randomly cancelled is still fulfilled when compared to that deduced in 60% missing 

data, which is highly distorted.  

 



CHAPTER 5 
 

103 

 

 

Figure 85. The 2D IRLS-FT spectra when a) 15% of the equidistantly sampled gravity 

datasets are missing, b) 25% of the equidistantly sampled gravity datasets are missing, c) 

35% of the equidistantly sampled gravity datasets are missing, d) 45% of the equidistantly 

sampled gravity datasets are missing, e) 50% of the equidistantly sampled gravity datasets 

are missing, f) 60% of the equidistantly sampled gravity datasets are missing. 

 

      On the other hand, the regional gravity anomaly maps estimated by the inversion-based 

low-pass filtering of the above-mentioned spectra are illustrated in Figures 86a, b, c, d, e, and 

f respectively. Compared to the regional gravity anomaly maps constructed by both the DFT 

and IRLS of the equidistantly noise-free and noisy sampled complete datasets (Figures 73 and 

75 respectively), there are striking similarities in cases of missing 15%, 25%, 35%, and 45% of 

measurements, which are numerically supported by low data distance values of 0.0266, 0.0269, 
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0.0351, and 0.0529, respectively. As in all of our previous examples, these distances increase 

by increasing the number of excluded measurement data.  

 

   Figure 86. The regional anomaly maps using IRLS-FT when a) 15% of the equidistantly 

sampled gravity datasets are missing, b) 25% of the equidistantly sampled gravity datasets 

are missing, c) 35% of the equidistantly sampled gravity datasets are missing, d) 45% of the 

equidistantly sampled gravity datasets are missing, e) 50% of the equidistantly sampled 

gravity datasets are missing, f) 60% of the equidistantly sampled gravity datasets are missing. 

      In the 50% missing data case, the mean value of the data distance is 0.0811, whereas a very 

high data distance value of 0.3831 is given when 60% of the observing data points are randomly 

neglected. The latter is owing to that as we increase the missing data percentages the number 

of the measurements becomes closer to the number of the model parameters (𝑀𝑥 𝑀𝑦=625) and 

hence, the inverse problem is sounded to be marginally over-determined. As stated in the 

magnetic methodology, the results show that the IRLS inversion approach is extremely 
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appropriate for gravitational data processing even when half of the measuring points (50%) are 

absent as a maximum, where the over-determination ratio has a value of 845/625=1.352. 

5.5.1.2. Noise contaminated Equidistantly Sampled Gravity Datasets 

      To prove the stability and effectiveness of the newly developed inversion method the 

algorithm is applied to the same noisy datasets sampled equidistantly (Figure 68). The 2D noisy 

frequency spectra estimated when missing 15%, 25%, 35%, 45%, 50%, and 60% of the datasets 

are shown in Figures 87a, b, c, d, e, and f respectively. 

 

Figure 87. The 2D IRLS-FT spectra when a) 15% of the equidistantly sampled noisy gravity 

datasets are missing, b) 25% of the equidistantly sampled noisy gravity datasets are missing, 

c) 35% of the equidistantly sampled noisy gravity datasets are missing, d) 45% of the 

equidistantly sampled noisy gravity datasets are missing, e) 50% of the equidistantly sampled 

noisy gravity datasets are missing, f) 60% of the equidistantly sampled noisy gravity datasets 

are missing. 
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      A total of 1422, 1274, 1100, 913, 834, and 651 observations are used for the missing 

percentages respectively. It is noticed that all the spectra are nearly similar when compared to 

those found in the equidistantly sampled noise-free datasets (Figures 85a, b, c, d, e, and f 

respectively) reflecting the higher inversion adaptability. Furthermore, the 2D inverse Fourier 

transformations as designated by the regional gravity anomaly maps are presented in Figures 

88a, b, c, d, e, and f respectively.  

 

   Figure 88. The regional anomaly maps using IRLS-FT when a) 15% of the equidistantly 

sampled noisy gravity datasets are missing, b) 25% of the equidistantly sampled noisy gravity 

datasets are missing, c) 35% of the equidistantly sampled noisy gravity datasets are missing, 

d) 45% of the equidistantly sampled noisy gravity datasets are missing, e) 50% of the 

equidistantly sampled noisy gravity datasets are missing, f) 60% of the equidistantly sampled 

noisy gravity datasets are missing. 
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      The filtered gravity maps demonstrate low data distance values of 0.0270, 0.0275, 0.0366, 

and 0.0547 for 15%, 25%, 35%, and 45% missing data cases respectively. When only half of 

the readings (the percentage at which the inverse problem is completely over-determined 

834/625=1.334) are used, the distance is computed as 0.0823, however, for the 60% case, it is 

calculated as a much higher value of 0.3967 due to the marginal over-determination of the 

inverse problem. According to these findings, we can conclude that our introduced inversion is 

robust, stable, and effective for processing gravity datasets-based noise contamination, and 

therefore reinforces its economically meaningful in the different geophysical explorations. 

5.5.2. INCOMPLETE GRAVITY DATASET WITH NON-EQUIDISTANT SAMPLING 

5.5.2.1. Noise-free Non-equidistantly Sampled Gravity Datasets 

      Our analysis has been expanded to the 2D non-equidistantly sampled noise-free gravity 

datasets (Figure 78). Figures 89a, b, c, d, e, and f show the 2D frequency spectra estimated at 

missing percentages of 15%, 25%, 35%, 45%, 50%, and 60% respectively. Measurements of 

1429 are used for 15% missing case, 1262 for 25%, and 1083 for 35%, while in 45%, 50%, and 

60% missing percentages, a total of 933, 854, and 634 are produced respectively. In all our 

calculations, we utilize the same order of Hermite Functions (M=25 in both x and y- directions). 

Great similarities in both anomaly shapes and amplitudes are presented when compared to those 

proceeded in the noise-free incomplete gravity data sampled equidistantly (Figures 85a, b, c, 

d, e, and f respectively).  

      For the given missing data percentages, the 2D Fourier transformation of the noise-free 

spectra are used in Eq. 103 and Eq.104 to produce the regional gravity anomaly maps as seen 

in Figures 90a, b, c, d, e, and f respectively. The filtered maps are comparable to those 

established with the equidistantly sampled noise-free incomplete gravity data (Figures 86a, b, 

c, d, e, and f respectively). The numerical estimates of mean distances for 15%, 25%, 35%, 45% 

missing data cases are 0.0268, 0.0317, 0.0426, and 0.0639 respectively. In addition, well-

satisfied results are obtained in 50% missing case which has a distance of 0.0964. In contrast, 

extreme deformation and distortion are readily visible when 60% of the measurements are 

randomly ignored, as numerically evidenced by a substantially larger data distance value of 

0.4867. In our cases, the marginal overdetermination ratio of the inverse problem persists as we 

increase the percentages of the missing data by over 50% (the percentage at which the inverse 

problem is completely over-determined 854/625=1.3664). 
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Figure 89. The 2D IRLS-FT spectra when a) 15% of the non-equidistantly sampled gravity 

datasets are missing, b) 25% of the non-equidistantly sampled gravity datasets are missing, c) 

35% of the non-equidistantly sampled gravity datasets are missing, d) 45% of the non-

equidistantly sampled gravity datasets are missing, e) 50% of the non-equidistantly sampled 

gravity datasets are missing, f) 60% of the non-equidistantly sampled gravity datasets are 

missing. 
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   Figure 90. The regional anomaly maps using IRLS-FT when a) 15% of the non-

equidistantly sampled gravity datasets are missing, b) 25% of the non-equidistantly sampled 

gravity datasets are missing, c) 35% of the non-equidistantly sampled gravity datasets are 

missing, d) 45% of the non-equidistantly sampled gravity datasets are missing, e) 50% of the 

non-equidistantly sampled gravity datasets are missing, f) 60% of the non-equidistantly 

sampled gravity datasets are missing. 

5.5.2.2. Noise contaminated Non-equidistantly Sampled Gravity Datasets 

      The incomplete sampling problem based on the 2D randomly noise-contaminated gravity 

datasets shown in Figure 80 is assessed to prove the inversion efficiency and applicability. 

Figures 91a, b, c, d, e, and f illustrate the 2D amplitude-frequency spectra for measurements of 

1432, 1277, 1061, 938, 857, and 640 at 15%, 25%, 35%, 45%, 50% and 60% missing data 

percentages respectively. All the estimated spectra through the inversion procedure are nearly 
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identical when compared to those found in the equidistantly sampled noise-free situations 

(Figures 85a, b, c, d, e, and f respectively). 

 

Figure 91. The 2D IRLS-FT spectra when a) 15% of the non-equidistantly sampled noisy 

gravity datasets are missing, b) 25% of the non-equidistantly sampled noisy gravity datasets 

are missing, c) 35% of the non-equidistantly sampled noisy gravity datasets are missing, d) 

45% of the non-equidistantly sampled noisy gravity datasets are missing, e) 50% of the non-

equidistantly sampled noisy gravity datasets are missing, f) 60% of the non-equidistantly 

sampled noisy gravity datasets are missing. 

      The regional gravity anomaly maps at the missing percentages stated above are shown in 

Figures 92a, b, c, d, e, and f respectively. The stability of our IRLS inversion approach is 

numerically proven by low mean distance values of 0.0274, 0.0328, 0.0439, and 0.0647  when 
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15%, 25%, 35%, and 45% of the measuring points are randomly cancelled respectively. The 

value of the mean distance is 0.0976 in the 50% missing case, while the less over-determined 

ratio of the inverse problem associated with missing 60% of the data leads to a higher data 

distance value of 0.4881. These findings in both frequency and space domains indicate that half 

of the measuring data points (50%) are quite enough to judge the inversion efficiency (the over-

determination ratio is 857/625=1.3712), opening up a new and economically significant way of 

handling the incomplete sampling problems encountered during field data acquisition. 

 

   Figure 92. The regional anomaly maps using IRLS-FT when a) 15% of the non-

equidistantly sampled noisy gravity datasets are missing, b) 25% of the non-equidistantly 

sampled noisy gravity datasets are missing, c) 35% of the non-equidistantly sampled noisy 

gravity datasets are missing, d) 45% of the non-equidistantly sampled noisy gravity datasets 

are missing, e) 50% of the non-equidistantly sampled noisy gravity datasets are missing, f) 

60% of the non-equidistantly sampled noisy gravity datasets are missing. 



CHAPTER 5 
 

112 

 

According to the results demonstrated above, I declare thesis statement 4 as follows: 

Thesis 4 

I gave an extended analysis of the 2D IRLS-FT-based filtering method in terms of the missing 

gravity data problems in a numerical example containing 41x41 measurement points and 25x25 

unknown expansion coefficients.  

In my analysis of the missing data filtering problem on noise-free and Cauchy noise-

contaminated gravity datasets (containing outliers), I found that the inversion algorithm is stable 

and highly applicable for handling both the equidistantly and random-walk sampled incomplete 

gravity datasets even when 50 percent of the data measurements are cancelled or missing. In 

contrast, distorted anomaly shapes and amplitudes are provided at higher rates of the missing 

data percentages (when the over-determination rate is below 1.3).



CHAPTER 6 
 

113 

 

Chapter 6 

FIELD EXAMPLE: A CASE STUDY WITHIN SINAI PENINSULA, EGYPT  

 

6.1. STUDY AREA AND GEOLOGICAL SETTING           

      In the last few decades, Egypt is developing a strategy to entice Egyptians to reside in the 

Sinai Peninsula by completing economic projects and offering employment possibilities and 

also to lessen the overwhelming population in the vicinity of the Nile Valley. In the framework 

of the national Sinai development plan (NSDP), numerous developed communities and 

settlements, including those involved in mining, tourism, agriculture, and industrial operations 

have been constructed (ICG, 2007). The Sinai Peninsula is situated in Egypt's northeastern 

region. It is shaped like a triangle, with its base to the north running along the Mediterranean 

coast for roughly 210 kilometers, and Ras Mohamed, where it crests to the south. It is bordered 

to the east by the Gulf of Aqaba and the international boundary, and to the west by the Gulf of 

Suez and the Suez Canal. Said (1962) has recognized the Sinai Peninsula into three major 

portions. The first is the southern complex of high mountains such as Sant Katherine (highest 

peak), Um Shumar, and Al-Thabt. El-Tih and El-Egma plateaus, which make up approximately 

40% of Sinai, are placed in the center of the peninsula and slope northward toward Wadi El 

Arish. On the other hand, a lengthy and parallel row of dunes, some of which are exceeding 

100 meters high, isolate the Sinai Peninsula's northern mountains and hills from the 

Mediterranean Sea coast. The study area lies in the Egma-Tih plateau in the western central part 

of Sinai Peninsula, Egypt between latitudes 29° 16" to 29° 41" N and longitudes 33° 16" to 34° 

00" E as shown in Figure 93.  

      Because of the majority of Sinai's natural resources have not yet been properly utilized to 

their full potential, the study area, which is inhabited by the Bedouin population still needs to 

more development and reconstruction. This appears clearly by the land use or land cover map 

illustrated in Figure 94, which is established by Esri's recent Global Land Cover Map (GLCM) 

based on Sentinel 2 data as well. The land cover map shows that most of the study area is 

scrubland or bare ground, where a loss in the artificial cover is provided due to human activities. 

However, there is little consideration given to either crops or built areas attributable to a scarcity 

of daily use water, where the Bedouin population lives in the valleys and relies mostly on 

rainfall.  
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Figure 93. Location map of the area under investigation. 

 

Figure 94. Land use/land cover map of the study area. 
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      Furthermore, the surface geological setting of the investigated area is characterized by 

several rock units. Figure 95 employs high spectral and spatial resolution sentinel 2 data to 

construct an accurate geological map of the study area based on the spectral characteristics of 

each rock unit (Shebl et al., 2021 and 2022). According to the efficiency of the lithological 

mapping-based machine learning procedures, the lithological map is performed using a support 

vector machine (SVM). It is indicated that the Wadi deposits and Alluvial Hamadah deposits, 

which date from the Holocene and Pleistocene ages respectively, constitute the Quaternary 

sediments. Egma Formation, which is primarily comprised of chalky limestone, serves as a 

representative of the Lower Eocene deposits, which extend widely and almost cover the 

majority of the study area. 

 

Figure 95. a) FCC 12/11/2 RGB for lithological differentiation, b) lithological map of the 

study area created using SVM. 
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      In addition, shale makes up the majority of the Paleocene deposits represented by the Esna 

Formation, which are concentrated in the study area's Northwestern portion. The Maastrichtian-

aged Sudr Formation is found in the study region from the north to the south and is primarily 

composed of white to pale grey chalk. Moreover, Duwi Formation is widespread in the study 

region and is of the Campanian age. It is mostly made up of alternating beds of clastics and 

carbonates. Matulla Formation, which is of Coniacian and Santonian age and primarily made 

of limestone, belt-shaped stretched from the western to central south. The study area's southern 

region is dominated by the Turonian-aged Wata Formation, which is primarily made up of 

dolomitic limestone. Raha Formation is found in the southwest of the study area and is of the 

Cenomanian age. It is mostly made up of alternating beds of dolomitic limestone, marl, and 

claystone. Finally, the Malha Formation (Nubian sandstone), which is formed primarily of 

kaolinized sandstone intercalated with mudstone, paleosoil, and conglomerate, represents the 

Lower Cretaceous rocks that are only slightly distributed in the southwest of the study area. 

More details about the geology of central Sinai have been previously described by many authors 

(Hume, 1906; Shata, 1956; Said, 1990; Hassanin, 1997; Ali, 2006).  

      Due to its diversity of both simple and complex structural forms, the Sinai Peninsula is 

regarded as one of the regions that attain considerable attention from a structural point of view. 

The surface structural lineaments play a vital role in different purposes, for example as good 

indicators for groundwater recharge and other geotechnical and environmental aspects. 

Therefore, we present a lineament density map of the study area utilizing PALSAR DEM (Shebl 

and Csámer, 2021) as depicted in Figure 96a. The surface lineaments are seen to be widely 

dispersed throughout the study area, with little representation in the southwest. Additionally, 

the slope map of the area under investigation is demonstrated in Figure 96b. It is noticed that 

the study area is mostly characterized by gentle and moderate slopes, while the central and 

western portions are predominately steep slopes due to the presence of wadi cliffs and rock 

outcrops respectively. 
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Figure 96. a) Lineaments extracted from ALOS PALSAR DEM over their density map, b) Slop 

map in degrees of the study area. 

      More importantly, as an extension of the Oasis montaj software program for performing 

layer-earth models, GM-SYS 3D (Geosoft, 2014) is designed to generate a 3D basement relief 

magnetic map of the study area as shown in Figure 97. In our investigation, the model further 

assumes that there are two main layers in the subsurface: one for the sediments, with magnetic 

susceptibility zero, and another for the basement, with magnetic susceptibility referenced 

roughly by (Araffa et al., 2015) as 0.00075 CGS unit. In addition, the magnetic field strength, 

field inclination, and field declination input values must also be supplied for the 3D magnetic 

modeling. The corresponding values are 43134 nT, 43.58°, and 3.31° respectively. The 3D 

magnetic modeling indicates that the depth of the basement surface varies by about 200 meters, 
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going from shallow in the western portion of the research region (about 1658 m below sea level) 

to deeper in the eastern half (about 1857 m below sea level). 

 

Figure 97. 3D magnetic modeling of the basement relief surface in the study area. 

 

6.2. 2D IRLS-FT BASED LOW-PASS FILTERING           

6.2.1. A FIELD EXAMPLE WITH EQUIDISTANT SAMPLING 

      More interestingly, the efficiency and stability of our inversion-based 2D Fourier 

transformation (2D IRLS-FT) can be verified by applying its algorithm to real field data 

measurements. Consequently, we present a case study that relies on real gravity datasets 

measured in the investigated area mentioned above. It is well known that the biharmonic spline 

interpolation gridding approach is capable of resolving the majority of gridding challenges even 

when the highly noisy measured data sets are distributed over a non-regular sampling grid. In 

that regard, the gravity field data measurements carried out in the study area were interpolated 

to be set along with an equidistant sampling grid as shown in Figure 98. These gravity 

observations were taken in the area under exploration using CG-3 Autograv (Automated 

Gravity Meter) made by Scintrex. The instrument can be employed in both comprehensive local 

investigations and regional surveys or large-scale geodetic studies since it can combine 

measurements to range over 7000 mGal without resetting and record with a reading resolution 

of 0.01 mGal (CG-3 Autograv Manual, 1995). In addition, each gravity station's elevation and 

location (latitude and longitude) were recorded using GPS for use in the subsequent data 
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adjustments. Figure 98 demonstrates that 441 equidistant measuring stations were sampled 

utilizing intervals of 3347 m and 2381 m in x and y directions respectively. 

 

Figure 98. Location map of the equidistantly measured gravity stations over DEM. 

 

      After gravity data corrections are made to all the readings, the measurements are plotted to 

obtain the Bouguer gravity anomaly contour map (Figure 99), which is also visualized in a 3D 

surface map as clearly seen in Figure 100. 

 

Figure 99. Bouguer gravity anomaly map of the datasets sampled equidistantly. 
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Figure 100. 3D Bouguer gravity anomaly surface of the datasets sampled equidistantly. 

 

      It is observed that the Bouguer gravity anomaly map of the study area indicates the lateral 

changes in the earth’s gravitational field, which is characterized by the presence of relatively 

high and low positive and negative gravity anomalies of varying sizes and magnitudes. The 

range of the total intensity gravity values is approximately -60 mGal to 20 mGal. Generally, the 

Bouguer gravity anomaly map illustrates an increase in the gravity anomaly from east to west 

which is probably attributed to the density increase associated with the uplifted basement block 

at the western part of the study area as described earlier in the 3D magnetic modeling of the 

basement relief surface (Figure 97). 

 

      The algorithm of the inversion-based FT is then implemented on the above-mentioned 

equidistantly measured gravity data sets to estimate the 2D Fourier frequency spectrum. 

Hermite functions of order Mx=My=13 were chosen to achieve both accuracy and stability of 

the inversion procedure. In the framework of the low-pass filtering approach, the spectrum is 

converted to space domain giving the 2D regional gravity anomaly map and the corresponding 

3D regional surface as depicted in Figures 101 and 102 respectively. It is obvious that the 

regional gravity anomaly datasets illustrate the gravity impacts brought about by the deep 

structures that are broad and extend widely in the studied area. Furthermore, the 3D regional 

gravity anomaly surface of the equidistant measuring datasets becomes more smoother and has 

virtually equal gravity amplitudes (-60 mGal to 20 mGal) when compared to that of the 3D 

Bouguer anomaly surface (Figure 100). These results allow us to conclude that the 2D IRLS 

inversion-based Fourier transformation employed in our study is very efficient, reliable, and 

capable of handling and processing the real field gravitational data sets sampled over 

equidistant grids.  
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Figure 101. Regional gravity anomaly map of the datasets sampled equidistantly. 

 

 

Figure 102. 3D Regional gravity anomaly surface of the datasets sampled equidistantly. 

 

6.2.2. A FIELD EXAMPLE WITH NON-EQUIDISTANT SAMPLING 

      Due to the presence of several restrictions that confront many geophysicists during the field 

survey, some of which are natural and others are artificially created, most of the measured 

datasets are taken over non-regular grids. Therefore, the stability and efficiency of our 

inversion-based 2D Fourier transformation algorithm are evaluated on 2D non-equidistantly 

sampled field gravitational datasets. To achieve our purpose, we randomize the regular gravity 

readings displayed in Figure 98 to generate the non-equidistant sampling grid as shown in 

Figure 103. To demonstrate how successful our inversion with irregular sampling processes is, 

the same number of field data measurements (441 measuring points) is used. 
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Figure 103. Location map of the non-equidistantly measured gravity stations over DEM. 

 

      Similarly, the Bouguer gravity anomaly map and the related 3D anomaly surface are 

demonstrated in Figures 104 and 105 respectively. Compared to the Bouguer anomaly map of 

the equidistant measuring datasets (Figure 99) as well as the 3D anomaly surface (Figure 100), 

the extremely like-sharped contour lines do not cover the whole surveyed area, revealing 

random distributions of rectangular blocks in x and y directions. 

 

Figure 104. Bouguer gravity anomaly map of the datasets sampled non-equidistantly. 
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Figure 105. 3D Bouguer gravity anomaly surface of the datasets sampled non-equidistantly. 

 

      The inversion-based low-pass filtering is subsequently executed on the non-equidistant 

measuring datasets shown above. Figures 106 and 107 illustrate the filtered regional gravity 

anomaly map and its 3D anomaly surface view respectively. A close examination indicates that 

the results are identical in both anomaly shapes and amplitudes when compared to those found 

in the equidistant sampling case (Figures 101 and 102 respectively). Most importantly, the 3D 

regional gravitational anomaly surface (Figure 107) is restored to its original form as one 

measure over an equidistant sampling grid. This reflects the inversion success and applicability 

when we deal with non-equidistant sampling field datasets, and it is therefore strongly 

recommended to investigate other geophysical tools' analyses of various datasets. 

 

Figure 106. Regional gravity anomaly map of the datasets sampled non-equidistantly. 
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Figure 107. 3D Regional gravity anomaly surface of the datasets sampled non-equidistantly. 

 

6.3. 2D IRLS-FT BASED INCOMPLETE SAMPLING PROBLEM     

      Aside from the quality and accuracy of the data gathered during the field application of 

various geophysical methodologies, the total cost and financial aspects must be taken into 

consideration as well. Covering the whole area with datasets is sometimes expensive, time-

consuming, and also labor-intensive, especially when the measurements are sampled over 

uniformly spaced grids. Furthermore, the natural or artificially created obstacles that encounter 

the geophysicists in the studied area are of great issue. Hence, the problem of the data missing 

or incomplete sampling can arise during the field survey. Consequently, our recently developed 

inversion-based Fourier transformation (2D IRLS-FT) can be regarded as one of the most 

crucial and economically advantageous concerns that have a great capability for resolving the 

difficulties stated. In our investigation, we apply our newly developed inversion algorithms to 

the above-mentioned equidistantly and non-equidistantly real gravity datasets measured in the 

western central part of Sinai Peninsula, Egypt to handle the missing data problem. 

6.3.1. A FIELD EXAMPLE WITH EQUIDISTANTLY SAMPLED INCOMPLETE 

DATASETS 

      The same real gravity data taken equidistantly over 441 measuring points (Figure 98) are 

subjected to the IRLS-based inversion. In an attempt to validate the inversion's stability and the 

point at which it stops operating, we provide four examples in the context of low-pass filtering 

at different missing data percentages (25%, 35%, 50%, and 60%). In our analyses, Hermite 

functions of order Mx=My=13 are selected. In the first two cases when 25% and 35% of the data 

are randomly canceled through the inversion process, the total number of the measurements is 

reduced to be 327 and 281 respectively. The 3D regional gravity anomaly surfaces derived at 



CHAPTER 6 
 

125 

 

these missing data percentages are shown in Figures 108a and b. When compared to 

gravitational forms and amplitudes calculated by the inversion approach in both equidistant and 

non-equidistant sampling complete datasets (Figures 102 and 107 respectively), it is found that 

these regional anomaly surfaces have the same properties. In the 50% missing data case, a total 

of 226 measurements are used to construct the 3D regional gravity anomaly surface as depicted 

in Figure 108c. The outcome is remarkably similar and satisfactory when compared to the 

equidistantly and non-equidistantly sampled regional anomaly surfaces based on the complete 

datasets. On the other hand, Figure 108d shows how the 3D regional gravity anomaly surface 

gets severely deforested and distorted in both anomaly shapes and amplitudes when the missing 

data percentage is increased up to 60%, using only 181 measuring points.  This attributes to the 

same problem of the marginal over-determination ratio that exposed us to synthetic gravity and 

magnetic processing, where the number of measured datasets is nearly close to the model 

parameters (𝑀𝑥 𝑀𝑦=169). In our investigation, measuring only half the study area's total data 

capacity (50%) is quite enough for the inversion introduced to accomplish our purpose of data 

processing as estimated by the completely over-determination value of 226/169=1.337.  

 

Figure 108. The 3D regional anomaly surfaces using IRLS-FT when a) 25% of the 

equidistantly measured gravity field datasets are missing, b) 35% of the equidistantly 

measured gravity field datasets are missing, c) 50% of the equidistantly measured gravity 

field datasets are missing, d) 60% of the equidistantly measured gravity field datasets are 

missing. 
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6.3.2. A FIELD EXAMPLE WITH NON-EQUIDISTANTLY SAMPLED INCOMPLETE 

DATASETS 

      To demonstrate the inversion effectiveness with the non-equidistantly sampled real gravity 

incomplete datasets, the algorithm is implemented on the non-regular sampling gravity datasets 

displayed in Figure 103. For comparison, the same missing data percentages are used when 

25%, 35%, 50%, and 60% of the measurements are randomly cancelled. A total of 331, 288, 

223, and 179 are randomly selected at each proportion respectively. The corresponding 3D 

regional gravity anomaly surfaces are shown in Figures 109a, b, c, and d using Hermite 

functions of order Mx=My=13.  

 

Figure 109. The 3D regional anomaly surfaces using IRLS-FT when a) 25% of the non-

equidistantly measured gravity field datasets are missing, b) 35% of the non-equidistantly 

measured gravity field datasets are missing, c) 50% of the non-equidistantly measured gravity 

field datasets are missing, d) 60% of the non-equidistantly measured gravity field datasets are 

missing. 

 

      It is obvious that the regional surfaces obtained in 25% and 35% of missing cases are 

identical to those of the equidistantly and non-equidistantly sampled complete gravity 

data (Figures 102 and 107 respectively). Moreover, there are slight variations in anomaly 

shapes and amplitudes while dealing with the 3D regional gravity anomaly surface of the 50% 

missing case but in general, it still provides us with satisfactory results. The inversion stops 
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operating when 60% of the measured data are randomly missing, in contrast to all the missing 

data percentages indicated previously due to the marginal over-determination where the 

breaking value of the completely over-determined inverse problem is approximately obtained 

at 50% missing case as 223/169=1.319. This is evident in the substantially deformed 3D 

regional surface. These results show that even when we measure only half of the datasets (50%) 

during the field survey, the inversion is resilient, efficient, and appropriate for processing the 

real incomplete datasets measured either equidistantly or non-equidistantly. Far beyond this 

proportion, the inverse problem is sounded to be slightly over-determined where the number of 

the observing data points used is nearly close to the number of the model parameters 

(𝑀𝑥 𝑀𝑦=169). Thus, as we previously stated, our newly developed inversion-based Fourier 

transformation opens up new and economically viable possibilities in data processing, as well 

as in the planning of field observations assembled using various geophysical tools. 

 

According to the results demonstrated above, I declare thesis statement 5 as follows: 

Thesis 5 

I assessed the efficiency and accuracy of the 2D IRLS-FT inversion method in outlier sensitivity 

and missing data problem using a field example of real gravity measurements sampled both 

equidistantly and non-equidistantly in the western central part of Sinai Peninsula, Egypt. A total 

of 441 measuring points were carried out over a grid of 21x21, whereas I set the unknown 

expansion coefficients as 13x13 to match the inversion procedure's accuracy and stability.  

In the framework of the low-pass filtering, I found that the inversion method has a higher 

capacity for noise rejection and gave me similar regional gravity anomaly maps reflecting the 

inversion's efficiency and robustness for processing both the equidistantly and non-

equidistantly measured field datasets. In the case of a missing data problem, I found that 

measuring only half of the study area's total data capacity (50%) is sufficient to present the 

inversion stability and accuracy, whether I treat equidistantly or non-equidistantly sampled field 

data measurements.  The results are distorted at the missing percentages over 50%, where the 

over-determination rate decreases below 1.3. 
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Chapter 7 

SUMMARY 

 

      The Fourier transformation is widely regarded as one of the most commonly utilized tools 

in geophysical data processing. In signal processing, several Fourier transformation algorithms 

methods are provided to enhance the quality of the geophysical datasets being interpreted, and 

hence, a comprehensive picture of the subsurface geology can be effectively drawn. It is well 

known that geophysical datasets collected in the field might occasionally encounter a slew of 

problems. This is owing to the presence of obstacles, either naturally or purposefully 

manufactured, in the surface area being investigated. In particular, advances in geophysical 

equipment as well as various surface topographical characteristics, like caverns, hills, and 

mountains, have a significant impact on data qualification. The constraints that necessitate the 

survey to be carried out on non-regular or random grids of measuring data points. In that case, 

it is quite likely that a fraction of noise outliers unrelated to subsurface geological anomalies 

will be included in the geophysical information gathered. Additionally, the random surveying 

of the areas under investigation causes gaps in missing datasets, and therefore, a significant 

amount of information is susceptible to lose. Due to the inefficiency and limitations of the 

traditional Fourier transformation (DFT) approach in processing the outlier noisy data, as well 

as the non-regular and incomplete sampling designs, this thesis introduces an algorithm of the 

inversion-based 1D and 2D Fourier transformation (IRLS-FT) to cope with these challenges. 

Dobróka et al (2015) used a one-dimensional (1D) inversion technique, which was further 

extended and adapted to two-dimensional (2D) inversion (Dobróka et al, 2017). Their research 

findings revealed sufficient improvements in both the space and frequency domains.  

      To give a complete analysis of the applicability of the IRLS-FT method, this thesis' 

objectives can be broken down into three distinct categories. The first is reducing the outlier 

sensitivity by applying the inversion-based Fourier transformation to the synthetic 1D wavelet 

and 2D magnetic and gravity datasets, as well as real gravity field measurements. Moreover, 

the second is to analyze the inversion approach in processing the non-regularly sampled 

complete datasets in 1D and 2D. For the two mentioned goals, the proposed IRLS-FT inversion 

method is based mainly on the iteratively reweighted least-squares Fourier transformation. The 

series expansion method is employed to discretize the Fourier frequency spectrum, with the 

expansion coefficients approximated as the solution to the over-determined inverse problem. 

The Hermite functions are constructed as basis functions, taking advantage of the fact that they 
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are eigenfunctions of the Fourier transformation, permitting quick and precise calculation of 

the elements of the Jacobian matrix. Besides, the most frequent value (MFV) method is used to 

handle the problem of the scale parameters by iteratively calculating the Cauchy-Steiner 

weights through an internal iteration loop with the least amount of data loss. The thesis' final 

goal, on the other hand, is to overcome the incomplete sampling problem at various degrees of 

missing data. This procedure is employed by reconstructing the inversion algorithms stated 

above and testing them on regularly and non-regularly sampled incomplete synthetic 1D 

wavelet and 2D magnetic and gravity datasets, as well as incomplete gravity field data.  

      First, the inversion-based Fourier transformation (IRLS-FT) method is tested on synthetic 

datasets sampled in one dimension. For noise rejection capacity, a comparison between our 

inversion approach and the conventional Fourier transformation (DFT) method is presented 

(Dobroka et al, 2012; Szegedi and Dobróka, 2014; Nuamah et al, 2021). In this case, the time-

domain 1D equidistant synthetic Morlet wavelet is constructed over 401 measurement points. 

To evaluate the noise sensitivity, the aforementioned noise-free wavelet is subsequently 

contaminated with both Gaussian and random noise of Cauchy distribution, emulating the real 

filed data measurements. The real and imaginary components of the Fourier frequency spectrum 

are then computed using the conventional (DFT) and inversion-based IRLS-FT methods, which 

convert the noisy datasets from the time domain to the frequency domain. The results 

demonstrated that the inversion-based Fourier transformation (IRLS) approach is resilient and 

has a substantial ability to reduce outlier spread when compared to those found by the traditional 

DFT method, as numerically evidenced by the data and model distance values. However, the 

same data is randomized to show how effective the inversion is in the non-regular sampling 

case (Nuamah and Dobróka, 2019). Two different strategies are constructed, the datasets are 

first randomly selected and then generated in a framework of the random walk measurement 

positioning. The visualized and numerical findings in both sampling procedures provide 

extreme effectiveness, robustness, and applicability of the inversion method for processing 1D 

complete datasets gathered in non-regular configurations. Finally, we identify an interesting 

research point on the incomplete sampling problem that we'd like to tackle. Hence, a newly 

developed algorithm of the inversion-based 1D Fourier transformation method is applied to the 

1D incomplete datasets sampled both equidistantly and non-equidistantly. In both cases, the 

measuring data points are randomly missed or cancelled achieving different missing data 

percentages (for example, 15%, 30%, and 50%). According to the outcomes, it can be 

demonstrated that the new inversion approach is highly appropriate for processing both 
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regularly and non-regularly collected incomplete datasets, even when half of the observations 

(50%) are missing. Further, the inversion is followed by the solution of a more sophisticated 

data geometry as defined by the block incomplete sampling design. To do so, different block 

intervals are specified, with their related data contents being erased or cancelled at random. It 

is shown that the inverted wavelet by our inversion method restored its original shape as if we 

were operating with complete datasets reflecting its higher applicability, and it may thus be 

suggested for geophysical field datasets gathered in incomplete block designs. 

      Due to the efficacy of the IRLS inversion approach in processing 1D datasets, the inversion 

algorithm is developed to be applied to equidistantly and non-equidistantly sampled 2D 

synthetic magnetic data. Our work is dominated by a practical application in the field of 

reduction to the Earth's magnetic pole (RTP) (Dobróka et al, 2017; Abdelaziz and Dobróka, 

2020; Nuamah et al, 2021). The pole reduction (RTP) enables us to locate the anomaly directly 

above the centre of the causative body, the problem which arose from the dipolar nature of the 

Earth’s geomagnetic field. The 2D synthetic magnetic data is generated above an FT-shaped 

magnetic anomaly (1681 measurements) using appropriate values of intensity, inclination, and 

declination. For measuring the outlier sensitivity, the datasets created along with an equidistant 

grid are contaminated with random noise of Cauchy distribution using a scale parameter of 

0.03. The Cauchy noise-contaminated datasets are then subjected to both the traditional 2D 

DFT and the 2D IRLS inversion algorithms yielding in 2D Fourier frequency spectra. To 

achieve both inversion accuracy and stability, Hermite functions of order (Mx=My=25) are 

chosen as basis functions in all our calculations of the magnetic data processing. The results of 

the spectra as well as the inverted RTP anomaly maps demonstrate a superior noise reduction 

capability of the inversion used, which can be effectively employed as a viable alternative to 

the conventional DFT method. After randomizing the observed data points, the 2D inversion is 

deployed to non-regular complete datasets in a manner analogous to that used in the 1D 

sampling scenario (Nuamah and Dobróka, 2019). Random selection and random walk 

measurement positionings are also used in the evaluation. The results demonstrate the inversion 

algorithm's efficiency and stability in handling the non-regular sampling concerns. In addition, 

the newly developed 2D inversion algorithm is employed for treating the incomplete sampling 

problem of the 2D magnetic datasets. Hence, regularly, non-equidistantly, and randomly 

sampled magnetic datasets are all subjected to the inversion algorithm using different missing 

percentages. To present a comprehensive impression of inversion efficiency and acuity, missing 

15%, 25%, 35%, 45%, 50%, and 60% of the data measurements are selected in all mentioned 
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sampling configurations. At the same missing data percentages stated above, the 2D noisy 

magnetic datasets carried out over both regular and random sampling grids are then evaluated. 

According to the visualized and numerical results based on both noise-free and noisy magnetic 

datasets, the newly developed inversion-based 2D Fourier transformation is highly applicable 

and gives adequate improvements up to 50% of missing data as a maximum, far beyond this 

point, the inversion is ineffective. That is because our inverse problem is sounded to be 

marginally over-determined where the observing data points used are nearly close to the number 

of the model parameters (𝑀𝑥 𝑀𝑦).  

      The applicability of our inversion-based Fourier transformation method is extended to the 

2D synthetic gravitational datasets for evaluating its capacity in noise reduction. Unlike the 

magnetic data processing described above, we present a practical geophysical deployment 

based on low-pass filtering, in which deep gravitational sources with low wavenumber 

(regional) are enhanced, while those of higher wavenumber related to the local shallow sources 

(residuals) are ignored or rejected. This filtering procedure results in regional gravity anomaly 

maps. To accomplish these goals, a model of a right rectangular prism using formulas given by 

(Nagy, 1966; Blakely 1996) is constructed to generate 2D synthetic gravity datasets (1681 

measurements). The model is initially created over an equidistant grid before being randomized 

to generate a non-equidistant sampling design. Furthermore, the synthetic datasets are then 

contaminated with random noise of Cauchy distribution to simulate real data. For signal 

processing, the conventional Fourier transformation (2D DFT) approach is only performed on 

the gravitational datasets sampled equidistantly, whereas the 2D IRLS-FT inversion 

methodology is applied to data dispersed over both equidistant and non-equidistant grids. In 

both, the inversion procedures are executed using Hermite functions of order Mx=My=25 as an 

inversion parameter for a compromise between accuracy and stability. In the equidistant 

sampling case, the inversion algorithm gives a much better resolution and has a higher noise 

rejection capability when compared to the results found by the traditional DFT method, 

especially when the Cauchy noise is dominating. This appears clearly in the noisy regional 

gravity anomaly maps estimated by IRLS-FT which is the same as that obtained by the DFT 

method with the noise-free data. The improvements are further verified by mathematical 

computations of data and model distance values in the space and frequency domains 

respectively. Similarly, the 2D inversion-based Fourier transformation is applied to the non-

equidistantly sampled noisy and noise-free datasets. According to the findings represented by 

the data filtering enhancements as well as the numerical calculations in space and frequency 
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domains, the inversion seems to reset the data to its original shapes and amplitudes as one would 

measure over an equidistant grid. It reflects our inversion approach's efficiency, stability, and 

adaptability in processing gravitational data sampled non-equidistantly, making it highly 

recommended to treat diverse data taken via other geophysical tools. Finally, the incomplete 

sampling problem is assessed using our newly developed IRLS-based inversion on noise-free 

and noisy 2D gravity datasets sampled at the same missing data percentages used for magnetic 

data processing (15%, 25%, 35%, 45%, 50%, and 60%). In both equidistant and non-equidistant 

sampling cases, stability and effectiveness of the inversion used are evidenced for all missing 

data below 50 percent (the percentage at which the inverse problem is completely over-

determined) which are distorted after that point due to the same problem of marginal over-

determination ratio.  

      Finally, the assessment of the above-mentioned inversion-based Fourier transformation 

method (2D IRLS-FT) is completed with a field example of real gravity measurements acquired 

using CG-3 Autograv (Automated Gravity Meter) manufactured by Scintrex (CG-3 Autograv 

Manual, 1995). Hence, a case study within the western central part of Sinai Peninsula, Egypt is 

involved. The study area is of great importance where the Egyptian government is developing 

a strategy in the last few decades to encourage tourism, agriculture, and industrial enterprises 

as a part of the national Sinai development plan (NSDP). The geological setting of the study 

area is characterized by the presence of several rock units belonging to Lower and Upper 

Cretaceous, Paleocene, Lower Eocene, and Quaternary deposits. In addition, to acquire a 

comprehensive image of the area under investigation, other maps including those showing land 

use/cover, lineaments density, and slope are supplied. A 3D magnetic modeling is constructed 

showing the basement relief surface of the study area, which varies by roughly 200 meters from 

west to east. For gravity data processing, the inversion-based low-pass filtering is implemented 

on the field data (441 measurements) taken over an equidistant grid which is subsequently 

randomized to construct a non-equidistant sampling design. In both cases, we provide the 

Bouguer gravity anomaly contour maps and related 3D visualization. Our inversion then uses 

Hermite functions of order Mx=My=13 to estimate the regional gravity anomaly maps and 

surfaces. The results showed the same properties reflecting the inversion's efficacy and 

robustness for handling both the equidistantly and non-equidistantly measured field datasets. 

Furthermore, the two configurations of field data indicated above are examined for the 

incomplete or missing sampling problem utilizing our newly developed inversion method. 

Hence, missing 25%, 35%, 50%, and 60% of the data measurements are selected in both 
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sampling geometries to compare the corresponding results and also to accomplish the inversion 

stability by identifying the missing percentage at which the inversion is insufficiently effective 

or ceases to operate. The 3D low-pass filtered regional gravity anomaly surfaces showed that 

regardless of whether we treat equidistantly or non-equidistantly sampled field data 

measurements, measuring only half of the study area's total data capacity (50%) is sufficient to 

present our newly developed inversion stability and accuracy. Dealing with our real datasets, it 

is established that as we increase the missing data percentages after 50%, the obtained results 

are distorted where the number of the field data measuring points is nearly close to the number 

of the model parameters (𝑀𝑥 𝑀𝑦), and hence the inverse problem is slightly overdetermined. 

According to the findings of 1D and 2D synthetic datasets in space and frequency domains, as 

well as the real gravitational field data measurements, the newly developed inversion-based 

Fourier transformation approach is highly applicable, robust, and noise resistant, opening up a 

new and economically powerful way of handling the incomplete sampling problems 

encountered during wide and diverse field data acquisition. 
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