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SUPERVISOR’S FOREWORD 

 

for the PhD thesis 

„ INTERVAL INVERSION APPROACH FOR INTERPRETATION OF MULTI-

WELL LOGGING DATASETS” 

by Mahmoud Ali Gaballah Abdellatif  

 

The topic of the Candidate’s thesis - joint inversion of borehole geophysical data 

- is in the focus of international research. The new method developments introduced by 

the Candidate in the thesis belong to the range of modern data processing tools applied to 

in situ geophysical data. The suggested 2D inversion methodology is capable to 

simultaneously process multi-borehole datasets in order to derive both the lateral and 

vertical variations of petrophysical parameters and layer thicknesses of geological 

formations in a highly accurate and reliable way. This inversion strategy can be used as a 

powerful tool in petroleum exploration and several other fields of geosciences, too.  

The inversion methodology is a result of a pioneer work, which may open a path 

to several applications, for instance evaluating 2D/3D structures including groundwater 

and hydrocarbon formations. In the future, the inversion method can be extended to 3D 

inversion of multivariate well logging datasets to determine the morphology of rock 

formations together with the most important reservoir parameters. Due to the high data-

to-unknowns ratio of the solved inverse problem, it is possible to estimate new 

(inversion) unknowns such as physical properties of rock constituents, response function 

constants and other zone parameters. The extraction of these parameters is not only a 

scientific innovation, but also it can reduce the financial cost of core sampling operations 

and lab measurements in practice. Unconventional reservoirs like organic rich shale and 

tight gas formations are multi-mineral rocks, the matrix volumes, porosity, saturation, 

kerogen content of which are delicate parameters to be estimated. By the newly 

developed 2D interval inversion approach, significant quality improvement in their 

quantitative evaluation is expected. The automated estimation of layer boundaries is a 

unique achievement of the Department of Geophysics of the University of Miskolc. The 

Candidate followed this research idea and further developed it in his thesis. 

The Candidate’s continuous efforts towards scientific research, his creativity, and 

the results presented in this thesis prove the scientific knowledge and the suitability of 
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the Candidate for independent research. In my opinion, the Candidate’s results, 

especially those of related to the simultaneous estimation of layer thickness and 

petrophysical parameters’ variations based on global optimization are worth to be 

published in farther ranked international journals of applied geophysics. The feasibility 

of the developed inversion method has been proven in international datasets, too. 

Herewith, I certify that this dissertation contains only valid data, and the presented 

results are representing the Candidate’s own work. In my opinion, the PhD thesis is fully 

adequate in scope and quality required by the Mikoviny Sámuel Doctoral School of 

Earth Sciences. Based on all the above, I recommend the public defense to be carried out 

for completing a successful process of acquiring a PhD title. 
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CHAPTER ONE  

1 
 

1. INTRODUCTION 

Geophysical studies of the inaccessible Earth’s interior by making measurements 

at or near the ground surface are affected by the internal distribution of physical 

properties. Detailed analyses of the measured information can assist to reveal not only 

the vertical variation of these properties, but the lateral variation as well. Applied 

geophysics involves physical methods such as gravity, magnetic, seismic, direct current, 

electromagnetic, and nuclear, which can be used to record the various physical responses 

of the interior of the earth and assist in solving different practical problems in terms of 

subsurface structures and phenomena (Kearey et al. 2002). The applicability of these 

geophysical methods since the variation of the physical quantities measured as a function 

of depth, time or sometimes frequency and energy can be also the reference proportion 

are the consequence of changes in the different material properties. The variations in 

these properties are primarily connected to the boundaries of different rock formations or 

fluids content.As a result, further useful information is provided for the oil and mining 

industry, hydrological, geotechnical, environmental, and archaeological surveys. 

In the last decades, significant success has been shown by Geophysics in oil and 

mineral ores exploration. Several geophysical techniques have been developed for the 

detection or/and mapping of hidden deposits and structures related to hydrocarbon 

accumulation. Of course, borehole geophysics is one of the most widely used of all 

geophysical tools. It used to obtain further in-depth (in-situ) information that is crucial in 

better understanding of subsurface conditions via measuring, investigating, and 

analyzing the physical properties of the surrounding rocks by means of the drilled 

borehole. The most frequent and useful applied borehole geophysical methods are based 

on self-potential, electrical resistivity, sonic or acoustic velocity, temperature, natural 

and induced radioactivity. It is possible to figure out the drilled wells by examining core 

samples but the gained information via this way would be incomplete even useless to 

define the nature of the drilled rocks and clarify or distinguish between the types of 

fluids presented in the rock formations if not complemented by certain new borehole 

logging techniques which represent a tremendous source of information (Serra 1984). 

Substantially, the measured data through these techniques are typically effective in 

characterizing geologic, fluid flow, fracture patterns, and structural properties especially 

with the continual refinement that have been launched to the equipment and the 
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automated interpretation systems used for this purpose (Aguilera 1980; Bonter et al. 

2019; Akbar 2021). 

Well-logging is a relatively new science where the initial work on the field goes 

back to less than 130 years. In 1896 lord kelvin in Britain measured the temperature with 

depth through shallow holes. Most of us think that the interior of the earth was as cold as 

caves, but the coldness does not exceed only a few meters. In general, the subsurface 

temperature increases at a rate of one or two degrees per 100 feet, and such changes 

show much of what is present around the drilled well which is not indicated by any other 

measurements. The idea of well- logging, especially the electric logs is taken from the 

method of measuring resistance at the surface which was firstly used by Schlumberger 

brothers in France for prospecting the metal ore mining industry but gradually extended 

its activities to involve exploration of possible oil-bearing structures. To better 

understand the surface measurements, the Schlumberger brothers needed to incorporate 

resistivity information from deeper formations and the first attempt was made in 1927. 

 This first log marked a turning point in the history of hydrocarbon exploration despite 

being a little more than a simple hand-plotted graph. By 1929 the international demand 

for this process grew and subsurface logging was conducted in different countries around 

the world. Consecutively, new tools have been designed to complement electrical 

logging methods and provide measuring new parameters such as diameter, temperature, 

and inclination of the borehole. A significant contribution has been made through 

studying the relationship between resistivity, porosity, and water saturation in oil bearing 

formations (Archie 1942) and it known as Archie´s law which has become the basis of 

petrophysical interpretation yet.During the 1950s and 1960s, various electric logs were 

introduced, including the laterolog tool for measuring formation resistivity beyond the 

invaded zone using widely spaced electrodes, the microlaterlog tool for measuring the 

resistivity of the flushed zone with minimal influence from the mudcake or the 

undisturbed zone, and the microlog tool for detecting permeable zones across which a 

mudcake has formed. In addition to that sonic measurements are conducted for better 

depth control and placing equipment’s of well completion, the slowing down time 

technique is used to measure formation hydrogen concentration by detecting energy 

reduction of source neutrons and finally the first density log enables realization of bulk 

density measurement using gamma ray attenuation. Furthermore, the latter three logs 

sonic, neutron and density have been independently used to estimate the apparent 
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porosity. As a result of growing computer power and engineering development in the 

1970s the SARABAND and CORIBAND programs have been introduced as the first 

computerized reservoir analysis. The SARABAND program was designed to analyze 

shaly sand rocks via measuring volume of clay minerals and calculating fluid saturations 

while CORIBAND deals with multimineral lithology (Schlumberger 2017).  

The year 1980 marked the beginning of a qualitative leap in the interpretation and 

processing of wireline logging data collected from deep borehole. Several computer-

based inversion methods equipped with quality checking tools have been launched by 

petroleum companies for evaluating hydrocarbon formations such as Global system by 

Schlumberger (Mayer and Sibbit 1980), Ultra system by Gearhart (Alberty and Hashmy 

1984), and Optima system by Baker Atlas (Ball et al. 1987).These computer-processed 

log interpretation systems provide more accurate and reliable estimation of petrophysical 

proprieties such as porosity, water saturation and matrix volumes compared to the 

conventional ( quick look or deterministic) methods. Through the inversion methods, all 

the available data sets are combined in a joint inversion procedure to accurately derive 

the petrophysical parameters, while they are derived by using the conventional ones 

separately from each other by the analysis of a specific (single) well log.  

Inversion of well-logging data using the previously mentioned systems is 

conducted in a local way which means processing data acquired in a particular depth-

point and providing an estimate for the petrophysical parameter only to that point in a set 

of separate inversion runs (Drahos 2005; Mayer and Sibbit 1980). Such local inverse 

problem can be solved by using linear optimization techniques with obtaining fast and 

satisfactory results in typical cases. Since the number of probe measurements to some 

extent exceeds that of the petrophysical parameter unknowns (e.g., porosity, clay 

content, water saturation in invaded and uninvaded zones) to be determined in each 

depth-point, the problem represents a marginal overdetermined inverse one along the 

borehole. It is a known fact that in the case of inversion of a small number of 

measurement data, (and poor a priori information), the result is strongly affected by the 

measurement error (noise), thus we not always obtain a satisfactory result in terms of the 

accuracy and reliability of the local parameter estimation (Dobróka et al. 2016). It is 

possible to overcome this problem and obtain more accurate results by increasing the 

measured information from several well-logs, but it also has known technological 

limitations and additional costs. Given that the precise calculation of hydrocarbon 
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reserves demands the most reliable estimations of the petrophysical parameters by 

reducing the harmful effect of data noise, a new method namely interval inversion has 

been introduced for the analysis of open-hole logging data (Dobróka 1995; Dobróka and 

Szabó 2001).  

By means of the interval inversion method, all data of a longer depth interval are 

processed in one joint inversion procedure. Through the inversion procedures, the 

petrophysical properties of the geologic formations (unknowns) are related to the 

measured data by setting depth - dependent response functions. The series expansion-

based approach (Dobróka 1995) is suitable for discretizing the model parameters by 

expanding them into a series and approximating them not only in one point but also in 

the entire processed depth-interval. By this formulation, the relative number of measured 

data compared to the series expansion coefficients which represent the unknowns of the 

inverse problem can be effectively increased. Hence, a high data to unknown parameters 

ratio can be achieved which enhances the quality of the interpretation results. The great 

advantageous property of the interval inversion method is its capability to treat an 

increasing number of unknowns without significant decrease of overdetermination ratio.  

The geophysical inverse problems can be solved by seeking the minimum of the 

objective function which is expressed as the misfit between the measured data and the 

calculated one. There are several optimization approaches that can be used to find the 

extremum of such an objective function. The most considerable ones are depending on 

the solution of sets of linear equations and termed as linear or gradient-based techniques 

(Marquardt 1963; Menke 1984; Tarantola 1987). The linear methods are more favorable 

in practice due to their speed and efficiency, especially when having a proper initial 

model. Nevertheless, these methods assign the solution to a local optimum of the 

objective functions and cause truncation errors; hence they are not absolute minimum 

searching techniques. It is possible to avoid the local optimum solution of linear 

inversion methods and effectively find the absolute global optimum of the objective 

function by means of using global optimization methods. These meta-heuristic methods 

are characterized by high performance and efficiency such as Simulated Annealing 

(Metropolis et al. 1953), Genetic Algorithm (Holland 1975; Goldberg 1989) and Particle 

Swarm Optimization (Kennedy and Eberhart 1995). As a result, several studies have 

been conducted based on these methods in the analysis of borehole geophysical data 

(Zhou et al. 1992; Dobróka and Szabó 2001, 2012; Goswami et al. 2004; Szabó 2004). 
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The interval inversion method has been introduced (Dobróka 1995; Dobróka and 

Szabó 2001) and further developed by the research work of the inversion and 

tomography research team of the Department of Geophysics, University of Miskolc and 

still of interest so far. The main objectives of my PhD studies are to further develop the 

interval inversion method for 1D petrophysical parameter distributions and its extension 

2D cases. At first, I develop the Chebyshev polynomials-based interval inversion 

approach to characterize the reservoir rock in Komombo basin, Upper Egypt. I use a new 

alternative basis function (Chebyshev polynomials) for discretizing the model 

parameters. Thereafter, I further improve the 1D interval inversion method to evaluate 

the 2D petrophysical models. The 2D developments represent new innovative inversion 

approaches which integrate datasets of several neighboring deep wells to estimate lateral 

change of layer boundary coordinates together with the lateral and vertical variation of 

the petrophysical parameters. To accomplish this, I apply Legendre polynomials as an 

orthogonal set of basis functions instead of (non-orthogonal) power functions used in 

earlier applications. Thus, 2D petrophysical models can be obtained in a more accurate 

and reliable manner and geometry of the layer boundary of the geologic structures can be 

figured if the specified wells are in the same range. 

 

 

 

 

 

 

 

 

 

 

 

 

 

DOI: 10.14750/ME.2022.027



CHAPTER TWO 

6 
 

2. CHEBYSHEV POLYNOMIALS-BASED INTERVAL INVERSION METHOD 

FOR THE ANALYSIS OF WELL LOGGING DATA 

The inversion methods local and interval inversion ones play a vital role in the 

valuable analysis of borehole data. Regarding the local inversion approach, the model 

parameters are predicted point by point in a marginally overdetermined inverse problem. 

Although the method succeeded in setting the unknown model parameters (Dobróka et 

al. 2016), it is rather sensitive to the uncertainty of measured data and limited in 

estimation accuracy. To overcome this problem and obtain more accurate results by 

increasing the measured information from several well logs, but it also has known 

technological limitations and additional costs. Given that the truthful calculation of 

hydrocarbon reserves demands the most reliable estimations of the petrophysical 

parameters by reducing the harmful effect of data noise, a new method termed interval 

inversion has been introduced for the analysis of wire logging data (Dobróka and Szabó 

2001). By means of the interval inversion method, all data sets of a longer depth interval 

are processed in one joint inversion procedure. The petrophysical properties of the 

geologic formations (unknowns) are related to the measured data by setting depth-

dependent response functions. A series expansion approach (Dobróka 1995) allowed 

discretizing the model parameters and approximating them not only in one point but in 

the entire processed depth-interval as well. By this formulation, the relative number of 

measured data compared to the series expansion coefficients which represent the 

unknowns of the inverse problem is increased. Hence, a high data-to-unknowns 

(overdetermination) ratio can be achieved which enhances the quality of the 

interpretation results (Dobróka and Szabó 2002, 2005). The method was further 

developed, and the so-called zone parameters are computed with the petrophysical 

parameters as new inversion unknowns (Dobróka et al. 2007; Dobróka and Szabó 2011). 

Also, complex reservoirs were processed by the method, thus more than 3 matrix 

components which may be presented in volcanic or metamorphic can be determined 

(Dobróka et al. 2012). The application of the method also extended to evaluate organic-

rich shale (Szabó and Dobróka 2020) and tight gas (Szabó et al. 2022). 

In mathematics it is known that the classical orthogonal polynomials include the 

Hermite, Laguerre and Jacobi polynomials. The latter comprises Genebauer, Chebyshev, 

and Legendre polynomials (Abramowitz 1983). Up to this time, all the previous studies 

by using interval inversion method for reservoir characterization are based Legendre 
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polynomials as a discretization technique with the aim of increasing the vertical 

resolution in hydrocarbon-bearing formations (Dobróka et al. 2016). In my research, I 

tried to discriminate the possibilities of applying Chebyshev polynomials as an 

alternative orthogonal basis function for characterizing the reservoir rock in Komombo 

basin, Upper Egypt. 

2.1 Developed inversion procedures  

At first, I formulated the forward modeling for computing the calculated data. In 

the case of the local inversion the column vector of the model parameters given as 

𝐦 = [∅,  𝑆𝑥0,  𝑆𝑤,  𝑉𝑠ℎ]T,                                                (1) 

where ∅ is the porosity, Sx0 𝑎𝑛𝑑 Sw are the water saturation in the invaded and 

uninvaded zones respectively, and the volume of shale given as Vsh. 

The volume of sand can be calculated by using the following material balance 

equation 

𝑉𝑠ℎ + 𝑉𝑠𝑑 + ∅ = 1.                                                     (2) 

The l-th calculated data (𝑑𝑙
(𝑐𝑎𝑙𝑐)

) isobtained by using the following relationship  

𝑑𝑙
(𝑐𝑎𝑙𝑐)

= 𝑔𝑙(𝑚),                                                   (3) 

where the nonlinear operator 𝑔𝑙  represents the l-th response function. The response 

functions of Wyllie et al. (1956), Alberty and Hashmy (1984) and Schlumberger (1989) 

are used to derive the calculated data. 

In case of the interval inversion method (equation 3) is modified to be a depth- 

independent function for estimating the f-th calculated data (𝑑𝑓
(𝑐𝑎𝑙𝑐)

)              

𝑑𝑓
(𝑐𝑎𝑙𝑐)

= 𝑑(𝑐𝑎𝑙𝑐)(𝑧𝑖) = 𝑔𝑓(∅(𝑧𝑖), 𝑆𝑥0(𝑧𝑖), 𝑆𝑤(𝑧𝑖), 𝑉𝑠ℎ(𝑧𝑖)),                 (4) 

where 𝑧𝑖 represents the coordinate of the i-th depth (i = 1, . . ., Ns) and Ns is the number 

of the measurement points of the f-th well log. 

The i-th model parameter in equation (4) is discretized by using series expansion 

approach  

𝑚𝑖(𝑧) = ∑ 𝐵𝑞
(𝑖)

𝛹𝑞(𝑧),                                                  (5)

𝑄𝑖

𝑞=1

 

where 𝑚𝑖 denotes the i-th petrophysical parameter, 𝐵𝑞 is the q-th expansion coefficient 

and 𝛹𝑞 is the q-th basis function (up to Q number of additive terms). The Chebyshev 
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polynomial is used as an alternative basis function for approximating the variation of 

model parameters.   

There are four kinds of Chebyshev polynomials, and all have the same recurrence 

relation (equation 11) but with different starting polynomials p1, where p1=z, 2z, 2z-

1and 2z+1 for first, second, third and fourth kinds, respectively. The first and second 

kinds are more common comparing with the other ones 

𝑝0 = 1 ,      𝑝𝑛(𝑧) = 2𝑧𝑝𝑛−1(𝑧) − 𝑝𝑛−2(𝑧).                                   (6) 

In this study, I used the Chebyshev polynomials of the first kind which are orthogonal 

over the interval [1, -1] 

∫ 𝑇𝑚(𝑧)𝑇𝑛(𝑧) 𝑤(𝑧) 𝑑(𝑧) = 0               𝑖𝑓 𝑛 ≠ 𝑚,

1

−1

                   (7) 

where w (z) represents the weight function (w) which equals to (1 − 𝑧2)
−1

2⁄ . In terms of 

(z), it can be computed by the following recurrence relations 

T0 (z) =1,                                                             (8) 

T1 (z) = z,                                                             (9) 

𝑇𝑛(𝑧) = 2𝑧𝑇𝑛−1(𝑧) − 𝑇𝑛−2(𝑧)           (𝑛 ≥ 2).                       (10) 

The priority of using the first kind of Chebyshev polynomials is that with a large 

possible managing coefficient its absolute value over the interval [-1 1] is bounded by 

one unlike the second kind. This can be confirmed by illustrating the Chebyshev 

polynomials of the first and second kind for fourth and up to fourth degree in Fig.1. 

Another advantage of the Tn(z) is that they are orthogonal with respect to the inner 

product. For more clarification, the polynomials of the first kind are orthogonal to each 

other which give it a more valuable property. By using the Chebyshev polynomials of the 

first kind the series expansion (10) becomes  

𝑚𝑖(𝑧) = ∑ 𝐵𝑞
(𝑖)

𝑇𝑞−1(𝑧),                                              (11)

𝑄𝑖

𝑞=1

 

where Tq  represents the q-th Chebyshev polynomial.  

The inverse problem is solved by the damped least squares method (Marquardt 

1959) for the expansion coefficients to compute the vertical distribution of the 

petrophysical parameters  

𝐁 = 𝐆−g𝐝(m),                                                   (12) 
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where d(m) is the vector of measured data and 𝐆−g is the generalized inverse of the 

problem. The relative data distance between the calculated data and the measured one is 

minimized to obtain the optimal value of the expansion coefficients  

𝐷𝑑 = √1

𝐾
∑ (

𝑑𝑘
(𝑚)

− 𝑑𝑘
(𝑐)

𝑑𝑘
(𝑚)

)

2𝐾

𝑘=1

= 𝑚𝑖𝑛,                                    (13) 

where K denotes the number of inverted data, 𝑑𝑘
(𝑚)

and, 𝑑𝑘
(𝑐)

 are the k-th measured and 

calculated data, respectively.  

The interval inversion method allows to derive petrophysical parameters more 

accurately provided that the observed data are reliable. The source of errors has been 

studied by Horváth (1973), providing an estimation of the uncertainty of different types 

of well logging data. Several ways have been proposed to quantify the quality of the 

inversion results. One of these is given by Menke (1984) where the covariance matrix of 

the estimated petrophysical parameters from the linear optimization techniques is related 

to the covariance matrix of the measured data including their variances. 

Unlike the local inversion method, the petrophysical parameters are derived by 

interval inversion from the estimated expansion coefficients (B) thus the covariance 

matrix of series expansions can be expressed as follows 

𝑐𝑜𝑣𝐁 = 𝐆−𝑔𝑐𝑜𝑣𝐝(m)(𝐆−𝑔)T,                                         (14) 

where 𝐆−𝑔denotes the generalized inverse matrix. Hence, the depth-dependent model 

covariance matrix of the estimated parameters is (Dobróka et al. 2016) 

[𝑐𝑜𝑣 𝐦 (𝑧)]𝑖𝑗 = ∑ ∑ 𝑇𝑛−1(𝑧)(𝑐𝑜𝑣𝐁)ℎℎ′𝑇𝑚−1(𝑧),

𝑄(𝑖)

𝑚=1

𝑄(𝑖)

𝑛=1

                    (15) 

where indices are h=n+Q1+Q2+…+Qi-1, h´=m+Q1+Q2+…+Qj-1 (I=1,2,..,P and 

j=1,2,…,P). The error of the estimated parameters is obtained by the main diagonal of 

the previous covariance matrix  

𝜎(m𝑖(𝑧)) = √𝑐𝑜𝑣𝐦𝑖𝑖(𝑧).                                         (16) 

On the other hand, the reliability of inversion results can be quantified by 

Pearson’s correlation matrix. Because only uncorrelated (or only weakly correlated) 

parameters can be resolved uniquely by inversion, the solution is considered reliable 

when the model parameters correlate marginally. If the absolute value of the correlation 
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coefficient is close to ±1, there is a strong relationship between the model parameters 

indicating an untrustworthy solution.Reliable solution requires a model with uncorrelated 

parameters with correlation coefficients between 0 and ± 0.5. In our inverse problem, the 

correlation matrix of the expansion coefficients estimated by the Chebyshev polynomial-

based interval inversion methods used as follow  

𝑐𝑜𝑟𝑟B =
𝑐𝑜𝑣B

𝜎(𝐁)𝑙𝜎(B)
.                                               (17) 

Else, the scalar S is used to characterize the overall correlation matrixof quantity B and it 

is given as   

𝑆(𝐦) = √
1

𝑃(𝑃 − 1)
∑ ∑(𝑐𝑜𝑟𝑟 𝐦)𝑖𝑗 − 𝛿𝑖𝑗)

2
𝑃

𝑗=1

𝑃

𝑖=1

, 

where 𝛿 is the Kronecker delta symbol (which is 1 if i=j, and 0 otherwise). 

 

 

 
 

Fig.1 Chebyshev polynomials of the first Tn (z) and the second Un (z) kinds for n-th 

degree (n=0, …3) over the interval [-1 1] and n-th degree (n=0, ...,7) over the interval 

 [-2 2] 

                 (18) 

DOI: 10.14750/ME.2022.027



CHAPTER TWO 

11 
 

2.2 Egyptian case study  

The proposed method is utilized on the applicable data set of well W. Al Baraka-

2, Komombo Basin-Upper Egypt. Komombo Basin lies west of River Nile in the 

southern Western desert, north of Aswan city bounded by latitudes 24 ̊10′00″ & 

24 ̊42′00″ N and longitudes 32 ̊40′00″ & 32 ̊55′00″ E (Fig. 2a). Komombo area included 

Al Baraka oilfield which is considered as the first oilfield discovered outside Egypt’s 

conventional producing areas. The concession is situated in the Komombo Basin, located 

800 km south of Cairo and is characterized by multiple stacked sand reservoirs. The 

concession contains the producing Al Baraka oilfield, covering a development area of 50 

km2. The stratigraphic sequence of Southern Western Desert has been deeply 

investigated by several authors (Klitzsch 1990; Wycisk 1994). This sequence could 

mainly be described in terms of Late Jurassic, Cretaceous and Paleocene succession (Fig. 

2b). The Komombo basin in Upper Egypt is a half-graben system and contains thick non-

marine sediments deposited during Early Cretaceous Hauterivian, Neocomian to 

Barremian followed by marine deposition during Cenomanian/Albian (argillaceous 

sandstones and shales) and later shales and marine limestones during Late Cretaceous 

and early Tertiary (Dolson et al. 2001). The main bounding fault of the Komombo Basin 

is located to the northeast and trending NW–SE, while the subordinate faults are mainly 

synthetic and of the same trend Fig 2c (Ali et al. 2017).  

The available dataset contains five types of well logs. The measured data are 

natural gamma-ray intensity "GR in API", shallow resistivity "Rs in ohm-m", deep 

resistivity "Rd in ohm-m", bulk density  "𝜌𝑏in g/cm3", and neutron-porosity "∅𝑁 in v/v". 

The environmentally corrected data logs are illustrated in Fig. 3. With a depth matched 

of the range from 0 to 14 m (relative depth coordinates). Since we have five types of logs 

with a sampling interval of 0.25, the total number of data is 280 points. The four model 

parameters (∅, 𝑆𝑥0,  𝑆𝑤, and 𝑉𝑠ℎ ) are discretized using orthogonal Chebyshev function 

with setting the degree of polynomials up to 14. Consequently, the total number of 

expansion coefficient (unknowns) becomes 60 where, 4(𝑄∗ + 1) = 60, 𝑄∗ is the 

maximum degree of Chebyshev polynomials thus the data to unknown’s ratio is 4.6. The 

initial values of these are set as 0.01 for porosity, 0.5 for water saturation in invaded and 

uninvaded zones, and 0.3 for the volume of shale. To obtain more consistent results the 

uncertainty of the observed data comparably to Horváth (1984) is quantified by studying 

the effect of data variance on the solution of the inverse problem. The standard 
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deviations of input data are set as 𝜎𝐺𝑅=0.05, 𝜎𝑅𝑑
=0.04,𝜎𝑅𝑠

=0.04,  𝜎𝜙𝑁
=0.03, 𝜎𝜌𝑏

=0.03. 

The confidence intervals of measured log types are illustrated in Fig. 3. 

The misfit of data distance and the convergence plot of the interval inversion 

procedures are illustrated in Figs. 4a and 4b. The maximum number of iterations during 

the inversion process is 50. The relative data distance in the zero-th iteration is 𝐷𝑑= 72.4 

%, which reduces to 𝐷𝑑 = 3.02 % in the last iteration. Based on these results we can 

conclude that a steady and rapid convergence to the optimum can be seen despite the 

data noise which leads to reliable estimation of the petrophysical parameters. The 

petrophysical parameters are derived from sixty expansion coefficients which are 

illustrated with their errors in Fig. 5. The standard deviation of water saturation and shale 

content is smaller than that of the porosity. 

The obtained petrophysical parameters with their estimated errors are 

demonstrated in Fig. 6. The average values of the estimated parameters of the reservoir 

rock in the investigated area are ranging between 0.14-0.25 v/v for porosity, 0.36-0.81 

v/v for clay content, 0.36-1.0 v/v, and 0.28-1.0 v/v for water saturation in the invaded 

zone and water saturation in the uninvaded zone, respectively. The relative errors of the 

estimated parameters are 0.02 v/v for porosity, 0.1 v/v for water saturation in invaded 

and uninvaded zones, and 0.03 v/v for the volume of shale. The correlation between the 

estimated model parameters is quantified as another check for the quality of our results. 

The absolute value of the 60-by-60 correlation matrix of inversion unknowns (15 per 

petrophysical property) can be seen in Fig. 7. The mean value of the correlation 

coefficients is equal to 0.3 which indicates poorly correlated expansion coefficients and 

highly reliable inversion results. It is worth mentioning that the most reliable inversion 

parameters are porosity and shale content. Since water saturations are correlated more 

strongly inherently, their estimation is riskier, but acceptable in this case (series 

expansion coefficients with small error ranges). 

The reliable estimation of the petrophysical parameters by the modified interval 

inversion method helped to quantitatively throw light over the hydrocarbon potentiality. 

The hydrocarbon saturation (𝑆ℎ𝑐) is derived by subtracting the estimated values of water 

saturation from unity. In more details the irreducible (𝑆ℎ𝑐,𝑖𝑟𝑟) and movable 

(𝑆ℎ𝑐,𝑚𝑜𝑣) hydrocarbon saturations are computed by using equations (19) and (20). 

Considerable oil saturation is exhibited of the reservoir rock in the study area Fig. 8. 
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𝑆ℎ𝑐,𝑖𝑟𝑟 = (1 − 𝑆𝑥0). 100 %,                                                         (19) 

 
𝑆ℎ𝑐,𝑚𝑜𝑣 = (𝑆𝑥0 − 𝑆𝑤). 100 %.                                                     (20) 

 

 

 

 
 

 

Fig. 2 a) Location of the study area, b) general stratigraphic column of Komombo 

concession (Repsol1998),  c) structural features, d) drilled wells indicating the 

investigated well in the recent study 
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Fig.3 Input well logs measured in W. Al Baraka-2 well and the assumed data uncertainty 

ranges of log readings for the interval inversion procedures  

 

 

 

 

 

Fig.4 a) Misfit between the measured and calculated data, b) Convergence plot in the 

subsequent DLSQ inversion procedure 
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Fig. 5 Results of interval inversion procedure using Chebyshev polynomials of 14 

degrees as basis functions in W. Al-baraka well. Estimated values of expansion 

coefficients for (i) porosity, (ii) water saturation of uninvaded zone, (iii) water saturation 

of invaded zone, (iv) volume of shale, and their estimation error ranges versus ordinal 

number of expansion coefficients in the model vector 

 

 

Fig. 6 Well logs of the estimated petrophysical parameters by interval inversion method 

with their calculated errors 
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Fig. 7 Pearson’s correlation matrix of series expansion coefficients estimated by the 

interval inversion method 

 

 

 
 

Fig. 8 Interval inversion interpretation plot of the reservoir rock in the investigated area 
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2.3 Discussion 

The newly proposed Chebyshev polynomials-based interval inversion approach 

has been used to characterize the reservoir rock in Komombo basin, Upper Egypt. As 

high overdetermination ratio can be achieved, the modified method shows a reliable and 

consistent estimation of the petrophysical parameters such as porosity, water saturation 

in invaded and uninvaded zones and volume of shale. A variety of checking quality 

techniques has been applied in our study. Furthermore, the accuracy of the estimated 

parameters leads to calculating the hydrocarbon saturation (irreducible and movable) in 

the investigated area.  

Thesis one 

I have developed an improved interval inversion method using a new 

discretization scheme for analyzing well logs measured in hydrocarbon formations. I 

used Chebyshev polynomials as new alternative basis functions to assure small 

correlation between the estimated model parameters and great overdetermination ratio. 

The modified interval inversion algorithm-based using orthogonal Chebyshev basis 

functions showed a significant success to accurately estimate the model parameters of 

the Komombo basin, Upper Egypt reservoir rock in steady inversion procedure. 
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3. LEGENDRE POLYNOMIALS-BASED INTERVAL INVERSION 

METHOD FOR ESTIMATING LATERAL CHANGES OF LAYER 

BOUNDARY COORDINATES 

In well logging applications, the local inversion method gives an estimate only 

for the petrophysical parameters at a given depth point and does not contain information 

about the layer boundaries. In this case, the determination of the rock interfaces is 

considered using another non-inversion procedure (GR curve analysis, cluster analysis 

etc.). Taking into consideration, the entire measurement datasets collected from a greater 

depth interval contains information about the layer boundaries and since the interval 

inversion method processes the entire dataset in a joint inversion process, it is possible to 

define the layer boundaries by developing an appropriate algorithm within the inversion 

(Szabó and Dobróka 2012, 2015). Given the significant advantages of the interval 

inversion algorithm in determining layer boundaries, I developed a new 2D interval 

inversion approach that integrates data sets from several neighbouring wells for 

determining lateral variation of formation boundaries. In my study I introduce the 

Legendre polynomials as an orthogonal set of basis functions instead of (non-orthogonal) 

power functions used in the earlier applications (Dobróka et al. 2009). 

In the case of the 2D interval inversion method, the petrophysical parameters are 

defined as a function of x and z which represents the horizontal and vertical coordinates, 

respectively. In this regard the straightforward problem (equation 9) for computing the 

well logging data is modified as  

𝑑𝑓
(𝑐𝑎𝑙𝑐)

= 𝑑𝑓
(𝑐𝑎𝑙𝑐)(𝑧𝑖, 𝑥𝑖) = 𝑔𝑓(∅(𝑧𝑖, 𝑥𝑖), 𝑆𝑥0(𝑧𝑖, 𝑥𝑖), 𝑆𝑤(𝑧𝑖, 𝑥𝑖), 𝑉𝑠ℎ(𝑧𝑖, 𝑥𝑖)),   (21)                  

where 𝑑(𝑐𝑎𝑙𝑐)(𝑧𝑖, 𝑥𝑖) indicates the f-th calculated data in depth z of the borehole situated 

at x coordinate. The series expansion method is used to discretize the model parameters 

similar to the one used in the 1D interval inversion method  

𝑚𝑖(𝑧, 𝑥) = ∑ ∑ 𝐵𝑞𝑙
(𝑖)

𝐿𝑖

𝑙=1

𝑄𝑖

𝑞=1

 Ψ𝑞−1(𝑧)Ψ𝑙−1(𝑥),                                     (22) 

where 𝑚𝑖 denotes the i-th petrophysical parameter (i=1,..….,M), 𝐵𝑞𝑙 is the ql-th 

expansion coefficient and 𝛹𝑞(z) and 𝛹𝑙(x) are  the q-th and l-th basis function depending 

on one of the two coordinates, respectively. An orthogonal Legendre- polynomials are  
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used to approximate the model parameters for obtaining more reliable solutions: 

Ψ𝑞−1(𝑥) = 𝑝𝑢(𝑥) = (2𝑢𝑢!)−1 𝑑𝑢

𝑑𝑧𝑢
(𝑧2 − 1)2, where u is the degree of polynomial. By 

applying equation (22) to expand the model parameters in equation (21) into series, the 

expansion coefficients represent the unknowns of the 2D inverse problem 

𝐵 = [𝐵1
(1)

, … , 𝐵𝑄1
(1)

, 𝐵1
(2)

, … , 𝐵𝑄2
(2)

, 𝐵1
(𝑀)

, … , 𝐵𝑄𝑀
(𝑀)

]𝑇 .                           (23) 

 

Also, the f-th function in equation (21) becomes  

 

𝑑𝑓
(𝑐𝑎𝑙𝑐)(𝑧𝑖, 𝑥𝑖) = 𝑔𝑓 (𝐵1

(1)(𝑧𝑖, 𝑥𝑖), … … … … , 𝐵𝑄𝑀
(𝑀)(𝑧𝑖, 𝑥𝑖)).                       (24) 

 

Linear optimization methods like DLSQ (damped least squares procedure) by 

Marquardt (1959) are used to solve our inverse problem by minimizing the L2 norm 

based objective function. 

𝐸 =
1

𝐹𝑃𝑁
∑ ∑ ∑ (

𝑑𝑓𝑝𝑘
𝑚 − 𝑑𝑓𝑝𝑘

𝑐

𝑑𝑓𝑝𝑘
𝑚 )

2

→ 𝑚𝑖𝑛,                                  (25)

𝑁

𝑘=1

𝑃

𝑝=1

𝐹

𝑓=1

 

where F denotes the number of boreholes, P is the number of depth points representing 

the interval processed and N is the number of applied probes in each well. 

Not only the lateral variation of petrophysical properties, but that of the layer 

boundaries can also be described by the suggested discretization method. Similar to 

equation (22), the layer thickness functions can also be expanded into series using proper 

basis functions and the expansion coefficients can be treated as inversion unknowns. I 

discretize the thickness function of the r-th layer as 

 

ℎ𝑟(𝑥) = ∑ 𝐶𝑡
(𝑟)

𝑇𝑟

𝑡=1

Ψ𝑡−1(𝑥),                                             (26) 

 

where Ct is the t-th expansion coefficient and 𝛹𝑡(x) is the t-th univariate basis function 

depending on the lateral coordinate. When using Legendre polynomials, I scale the 

values of x coordinates to the range of [-1,1], in which the polynomials are orthogonal. 

Thus, one can reduce the magnitude of the unknown series expansion coefficients and 

decrease the correlation between them to assure more reliable estimation. The use of 

bivariate series expansion can be avoided for some practical reasons. The depth of a 

given layer can be given by expansion coefficient C1, which equals to the depth 
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coordinate of the (upper or lower) boundary of the homogenous (plane) layer. A 

condition that the layers could not intersect each other, and the number of layers is 

constant during the inversion procedure should be met. This requirement meets when the 

initial values of C1 are properly set, and their search domain is preliminary constrained. 

In 2D inversion, the initial layer boundary coordinates can be assumed as the same 

constant in each well. Practically, the expansion coefficients corresponding to the higher 

degree basis functions (t≥2) are slightly changed to describe the thickness variation 

around the depth level given by C1. By using a differential genetic algorithm or other 

global optimization method, it is also possible to fix the search domain of expansion 

coefficients prior to inversion (Dobróka and Szabó 2012). The vector of inversion 

unknowns is formed by expanding vector B (equation (23)) by coefficients C. In case of 

having a great overdetermination ratio, the 2D interval inversion method solved by 

minimizing norm (equation 25) may give an automated estimation for both the 

petrophysical properties and the layer boundary coordinates in a stable and accurate 

inversion procedure. 

 

3.1 Synthetic modeling experiments  

A Legendre polynomials-based 2D interval inversion method is suggested both 

on noise free and noisy simulated measurements. Two Models A and B of homogenous 

multilayer structures related to hydrocarbon-bearing reservoirs have been used in the 

investigation. The first Model A is a three-layered anticline structures made up of shale 

and hydrocarbon bearing-sand formation (Fig. 9) and the second Model B is a four 

layered pinchout structure (Fig. 10). The following Gearhart Ultra-response equations 

(Alberty and Hashmy 1984) are used to generate the simulated well logging data  

𝐺𝑅 = ρ𝑏
−1(𝑉𝑠ℎ 𝐺𝑅𝑠ℎρ𝑠ℎ + 𝑉𝑠𝑑𝐺𝑅𝑠𝑑 ρ𝑠𝑑),                                  (27) 

𝐾 = ρ𝑏
−1(∅𝑠𝑥0𝑘𝑚𝑓ρ𝑚𝑓 + 𝑉𝑠ℎ𝐾𝑠ℎρ𝑠ℎ + 𝑉𝑠𝑑𝐾𝑠𝑑ρ𝑠𝑑),                      (28) 

𝑇ℎ =  ρ𝑏
−1(∅𝑠𝑥0𝑇ℎ𝑚𝑓ρ𝑚𝑓 + 𝑉𝑠ℎ𝑇ℎ𝑠ℎρ𝑠ℎ + 𝑉𝑠𝑑𝑇ℎ𝑠𝑑ρ𝑠𝑑),               (29) 

𝑈 = ρ𝑏
−1(∅𝑠𝑥0𝑈𝑚𝑓ρ𝑚𝑓 + 𝑉𝑠ℎ𝑈𝑠ℎρ𝑠ℎ + 𝑉𝑠𝑑𝑈𝑠𝑑ρ𝑠𝑑),                       (30) 

∅𝑁 = ∅(∅𝑁,𝑚𝑓 − (1 − 𝑠𝑥0)𝐶𝑐𝑜𝑟 − 2∅(1 − 𝑠𝑥0)𝑆ℎ𝑓(1 −  2.2ρℎ𝑐). [1 − (1 − 𝑠𝑥0)(1 −

 2.2ρℎ𝑐)] + 𝑉𝑠ℎ∅𝑁,𝑠ℎ + 𝑉𝑠𝑑∅𝑁,𝑠𝑑 ,                                                               (31) 

ρ𝑏 =  ∅[ρ𝑚𝑓 − 1.07(1 − 𝑠𝑥0)(𝛼0 − ρ𝑚𝑓 − 1.24ρℎ𝑐)] + 𝑉𝑠ℎρ𝑠ℎ + 𝑉𝑠𝑑ρ𝑠𝑑 ,          (32)          
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∆𝑡 = ∅[∆𝑡mf𝑠𝑥0 + (1 − 𝑠𝑥0)∆𝑡𝑐ℎ] + 𝑉𝑠ℎ ∆𝑡sh + 𝑉𝑠𝑑 ∆𝑡sd,                  (33) 
1

𝑅𝑑
=

∅2𝑆𝑤
2

𝑎𝑅𝑤(1−𝑣𝑠ℎ )
+

𝑣𝑠ℎ 𝑠𝑤

𝑅𝑠ℎ
,                                                  (34) 

1

𝑅𝑠
=

∅2𝑆𝑥0
2

𝑎𝑅𝑤(1−𝑣𝑠ℎ )
+

𝑣𝑠ℎ 𝑠𝑥0

𝑅𝑠ℎ
,                                                    (35)  

𝑃𝑒 = ∅ [𝑠𝑥0𝑝𝑒𝑚𝑓
+ (1 − 𝑠𝑥0)𝑝𝑒ℎ𝑐

] + 𝑉𝑠ℎ + 𝑉𝑠𝑑 + 𝑉𝑐𝑝𝑒𝑐
.                        (36) 

 
Fig. 9 Layer thickness functions of Model A (blue curve – initial model, green curve – 

target model, red curve – estimated model by interval inversion method) 

 
 

Fig. 10 Layer thickness functions of Model B (blue curve – initial model, black curve – 

target model, red curve – estimated model by interval inversion method) 
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The theoretical values of natural gamma ray intensity (GR), potassium (K), 

thorium (Th), uranium concentration (U), neutron porosity (∅𝑁), bulk density (ρ𝑏), 

shallow resistivity (Rs), deep resistivity (Rd), and photoelectric absorption index  are 

calculated in six wells (W-1,…, W-6) with dz =0.1 m sampling interval. The interval 

length is about 25 m; thus, I have N =15,060 data samples for each model and 5% 

Gaussian distributed noise is added to compute the noisy simulated measurements.  

In case of Model A, the petrophysical parameters and layer thicknesses are shown 

in Table 1 and the computed types of well logs and their notations are summarized in 

Table 2. The volumetric fractions are illustrated in Fig. 11, and the calculated log types 

can be seen in Figs. 12-17.  

Table 1 Petrophysical parameters and layer boundary thicknesses of  Model A 

Layer Lithology Petrophysical parameters 

(v/v) 

                     Layer thickness 

(m) 

Ø Sx0 Sw Vsh W-1 W-2 W-3 W-4 W-5 W-6 

1 Shale  0.05 1. 0 1. 0 0.8 7 3 9 4 8 6 

2 Gas-sand 0.3 0.8 0.4 0.1 13 7 12 7 14 12 

3 Shale  0.1 1. 0 1. 0 0.7 5 15 4 14 3 7 

 

Table 2 Types of open-hole logs applicable to 2D inversion and their notations 

Open hole log Zone parameter Symbol Constant unit 

Natural 

gamma-ray 

log 

Sand 

Shale 
𝐺𝑅𝑠𝑑 
𝐺𝑅𝑠ℎ 

13 

160 
API 

API 

Potassium 

concentration 

log 

Sand 

Shale 

Mud filtrate 

𝐾𝑠𝑑 
𝐾𝑠ℎ 
𝐾𝑚𝑓 

 

0.2 

3.2 

1.6 

% 

% 

% 

Thorium 

concentration 

log 

Sand 

Shale 

Mud filtrate 

 

𝑇ℎ𝑠𝑑 
𝑇ℎ𝑠ℎ 
𝑇ℎ𝑚𝑓 

2 

19 

2 

ppm 

ppm 

ppm 

Uranium 

concentration 

log 

Sand 

Shale 

Mud filtrate 

 

𝑈𝑠𝑑 
𝑈𝑠ℎ 
𝑈𝑚𝑓 

0.5 

5 

0 

ppm 

ppm 

ppm 
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Photoelectric 

absorption 

index log 

Dolomite 

Gas 

Mud filtrate 

𝑝𝑒𝑐
 

𝑝𝑒ℎ𝑐
 

𝑝𝑒𝑚𝑓
 

4.11 

0.09 

0 

barn ∕ e 

barn ∕ e 

barn ∕ e 

 Bulk density 

log 

Sand 

Shale 

Mud filtrate 

Gas 

Mud filtrate coefficient 

𝜌𝑠𝑑 
𝜌𝑠ℎ  
𝜌𝑚𝑓 

𝜌ℎ𝑐 
𝛼 

2.65 

2.47 

1.2 

0.153 

1.11 

g/cm3 

g/cm3 

g/cm3 

g/cm3 

- 

Neutron log Sand 

Shale 

Mud filtrate 

hydrocarbon coefficient 

Mud filtrate coefficient 

∅𝑁,𝑠𝑑 
∅𝑁,𝑠ℎ 
∅𝑁,𝑚𝑓 

𝑆hf 
𝐶cor 

-0.035 

0.3 

1 

1.17 

0.69 

v/v 

v/v 

v/v 

- 

- 

Acoustic log Sand 

Shale 

Mud filtrate 

Gas 

 ∆𝑡sd 
 ∆𝑡sh 
 ∆𝑡mf 

 ∆𝑡hc 

56 

108 

188 

211 

μs/ft 

μs/ft 

μs/ft 

μs/ft 

Resistivity log Shale 

Pore-water 

Cementation exponent 

Saturation exponent 

Tortuosity factor 

𝑅𝑠ℎ 
𝑅𝑤 
m 

n 

a 

1 

0.4 

1.4 

1.7 

0.9 

Ωm 

Ωm 

- 

- 

- 

 

 

 

 

Fig. 11 Volumetric parameters in the 6 well for calculaing the simulated logs of Model A 
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Fig. 12 Simulated logs (5% Gaussian distributed noise) of Model A in well 1 

 

 

 

Fig. 13 Simulated logs (5% Gaussian distributed noise) of Model A in well 2 
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Fig. 14 Simulated logs (5% Gaussian distributed noise) of Model A in well 3 

 

 

Fig. 15 Simulated logs (5% Gaussian distributed noise) of Model A in well 4 

 

 
 
 
 
 

DOI: 10.14750/ME.2022.027



CHAPTER THREE 

 

 
26 

 

 

Fig. 16 Simulated logs (5% Gaussian distributed noise) of Model A in well 5 

 

 

Fig. 17 Simulated logs (5% Gaussian distributed noise) of Model A in well 6 
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The layer boundary variations between the wells are described as quadratic 

Legendre polynomials over the x ⊂ [−1, 1] interval. For our 2D case the polynomial 

degree is settled as 6 and the initial depth of the upper H1(x) and the lower boundary H2 

(x) of the gas reservoirs are 6 m and 18 m, respectively. The target and the calculated 

layer boundary coordinates of Model A are presented in Table 3. It was shown that the 

hydrocarbon zone is well detected.  

Table 3 Target and estimated layer boundary coordinates of Model A  

Layer 

thickness 

function  

Wells  Values  

Target Estimated  

(Noise free) 

Estimated 

 (Noisy) 

H1(x) W-1 

W-2 

W-3 

W-4 

W-5 

W-6 

7.0 

3.0 

9.0 

4.0 

8.0 

6.0 

7.0 

3.0 

9.0 

4.0 

8.0 

6.0 

7.0 

3.0 

9.0 

4.0 

8.0 

6.0 

H2(x) W-1 

W-2 

W-3 

W-4 

W-5 

W-6 

20.0 

10.0 

21.0 

11.0 

22.0 

18.0 

20.0 

10.0 

21.0 

11.0 

22.0 

18.0 

20.03 

10.0 

21.0 

11.0 

22.0 

18.03 

 

 

 

To test the performance of my developed method for estimating more formation 

boundaries Model B is built with three-layer boundaries to be estimated. The same 

above-mentioned procedure is followed for calculating the simulated measurements. The 

volumetric fractions Table 4 are illustrated in Fig. 18 and the calculated log types can be 

seen in Fig. 19-24. The target and estimated layer boundary coordinates can be seen in 

Table 5. The newly developed method shows success to estimate extra layer coordinates 

and detect the upper and lower boundaries of the reservoir rocks in stable inversion 

procedures. Furthermore, for increasing the number of unknowns, and estimating lateral 

variation of petrophysical parameters together with layer thickness, it is advisable to 

combine linear and global inversion algorithms for a more reliable and initial model free 

estimation. 
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Table 4 Petrophysical parameters and layer boundary thicknesses of Model B 

Layer Lithology Petrophysical parameters 

(v/v) 

Layer thickness 

(m) 

Ø Sx0 Sw Vsh W-1 W-2 W-3 W-4 W-5 W-6 

1 water-

sand  

0.25 1 1 0.15 3 2 3 2 3 2 

2 shale 0.1 1.0 1.0 0.8 5 8 9 8 9 8 

3 gas-sand  0.3 0.8 0.4 0.1 0 2 5 10 12 15 

4 shale 0.05 1.0 1.0 0.7 17 13 8 5 1 0 

 
 

 

 
 

Fig. 18 Volumetric parameters in each well for calculating the simulated logs of Model B 
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Fig. 19 Simulated logs (5% Gaussian distributed noise) of Model B in well 1 
 
 

 

Fig. 20 Simulated logs (5% Gaussian distributed noise) of Model B in well 2 
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Fig. 21 Simulated logs (5% Gaussian distributed noise) of Model B in well 3 
 

  

 

Fig. 22 Simulated logs (5% Gaussian distributed noise) of Model B in well 4 
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Fig. 23 Simulated logs (5% Gaussian distributed noise) of Model B in well 5 

 

 

Fig. 24 Simulated logs (5% Gaussian distributed noise) of Model B in well 6 
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Table 5 Exactly known (target) and estimated layer boundary coordinates of Model B  

Layer 

thickness 

function 

Wells Values  

Target Estimated  

(Noise free) 

Estimated  

(Noisy) 

H1(x) W-1 

W-2 

W-3 

W-4 

W-5 

W-6 

3.0 

2.0 

3.0 

2.0 

3.0 

2.0 

3.0 

2.0 

3.0 

2.0 

3.0 

2.0 

3.05 

2.0 

3.01 

2.01 

3.0 

2.05 

H2(x) W-1 

W-2 

W-3 

W-4 

W-5 

W-6 

8.0 

10.0 

12.0 

10.0 

12.0 

10.0 

8.0 

10.0 

12.0 

10.0 

12.0 

10.0 

8.09 

10.01 

12.02 

10.02 

12.01 

10.09 

H3(x) W-1 

W-2 

W-3 

W-4 

W-5 

W-6 

8.0 

12.0 

17.0 

20.0 

24.0 

25.0 

8.0 

12.0 

17.0 

20.0 

24.0 

25.0 

8.02 

12.0 

17.0 

20.0 

24.0 

25.02 

  

 

 

3.2 Field test  

Once the simulated tests were performed, in-situ well logging data acquired in 

four boreholes side by side located in an Egyptian hydrocarbon field as shown in Fig. 25 

were processed by using the developed 2D interval inversion method. Data samples 

corresponding to given natural gamma-ray intensity (GR in API), shallow resistivity "Rs 

in ohm-m", deep resistivity "Rd in ohm-m", bulk Density  "ρ𝑏 in g/cm3", and neutron-

porosity "∅𝑁 in v/v". For more reliable delineation of the layer boundary our initial model 

is set as H1(x)= 4 m and H2(x)=12 m. The polynomial degree is settled as 4 degrees. The 

number of expansion unknowns which is 10 to 1120 measured data points resulting in a 

112 overdetermination ratio. The estimated layer boundary coordinates are shown in 

Table 6. The illustrated 2D section can be seen in Fig. 26. (The depth coordinates are 

transformed, not real ones). 

 

 

 

DOI: 10.14750/ME.2022.027



CHAPTER THREE 

 

 
33 

 

   Table 6 Estimated layer boundary coordinates of Egyptian field data 

Layer thickness function Wells Estimated Values 

H1 (x) 

 

 

 

              W-1 

W-2 

W-3 

W-4 

7.03 

8.33 

7.33 

4.03 

H2 (x) 

 

 

 

W-1 

W-2 

W-3 

W-4 

12.52 

10.50 

10.50 

12.02 

 

 

 

Fig. 25 Location of the wells involved in interval inversion experiments 
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Fig. 26 2D cross section of layer thickness variations obtained by 2D interval inversion 

procedure  

3.3 Discussion 

A Legendre polynomials-based interval inversion method has been proposed to 

estimate the lateral variation of layer boundary. The inverse problem was solved by 

using the so-called linear optimization techniques DLSQ (damped least squares method). 

Simulated measurements (noise free and noisy) of multilayer structures related to 

hydrocarbon bearing formations have been utilized to test the method. In-situ well 

logging datasets acquired in four wells of Egyptian hydrocarbon field processed by the 

proposed method and proved its feasibility.  

Thesis two 

 

I have developed an orthogonal Legendre polynomials-based 2D interval 

inversion approach that can determine the lateral changes of layer boundary coordinates. 

The thicknesses are obtained as cubic functions over the interval [-1, 1]. The inversion 

method was tested on two Models A and B built-up of homogeneous multilayer 

structures related to hydrocarbon bearing reservoirs. Linear optimization algorithm has 

been used to solve the inverse problem. By processing multi-borehole in-situ logging 

data, I proved the feasibility of the suggested method and successfully estimated the 

lateral variation of layer boundaries of Egyptian hydrocarbon field.  
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4. LEGENDRE POLYNOMIALS-BASED INTERVAL INVERSION 

METHOD FOR ESTIMATING LATERAL VARIATION OF 

PETROPHYSICAL PARAMETERS 

After successfully estimating lateral change of layer boundary coordinates in the 

previous chapter, the method is equally suitable for the spatial lateral and vertical 

determination of petrophysical parameters. From a numerical point of view, the 

advantage of this is that by integrating the borehole measurements, the uncertainty can 

be further increased, resulting in a qualitative improvement in the accuracy and 

reliability of the estimated parameters. In this chapter, I introduced a 2D interval 

inversion method based on a simulated annealing algorithm for determining the vertical 

and lateral variation of the petrophysical parameters along a 2D cross-section of several 

neighboring boreholes.  

4.1 Global inversion algorithm  

Unlike the linear optimization methods which could possibly bring the solution to a local 

minimum, global optimization seeks the absolute minimum of the objective function. 

Some of the most used global optimization methods in geophysics are Genetic Algorithm 

(Holland 1975), Particle Swarm Optimization (Kennedy and Eberhart 1995), and 

Simulated Annealing (Metropolis et al. 1953). The latter is used in this study to solve the 

inverse problem. 

Simulated annealing (SA) method has been developed by Metropolis et al. (1953) 

in metallurgy; the removal of work-hardening is realized by a slow cooling manipulation 

from the temperature of the liquid alloy state. This process decreases progressively the 

kinetic energy of many atoms with high thermal mobility, which is followed by the 

starting of crystallization. In theory, the ideal crystal with minimal overall atomic energy 

can be produced by an infinitely slow cooling schedule. This is analogous with the 

stabilization of the inversion procedure at the global optimum of the objective function. 

A fast-cooling process causes grating defects and the solid freezes in an imperfect grid at 

a relatively higher energy state. It is like the trapping of the inversion procedure in a 

local minimum. However, the atoms may escape from the high-energy state owing to a 

special process called annealing to achieve the optimal crystal grating by a slower 

cooling process. The SA algorithm employs this technology to search the global 

optimum of the objective (in the terminology energy) function E (equation 25).   
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The simulated method depends on the modification of the model vector, in this 

case the i-th model parameter in the n-th iteration is modified properly as follows  

    𝑚𝑖
(𝑛+1)

= 𝑚𝑖
(𝑛)

± 𝑏,                                                 (37) 

where b is the amount of changing (perturbation term) which is randomly changing  

between 0 ≤ 𝑏 ≤ 𝑏𝑚𝑎𝑥, while the parameter  𝑏𝑚𝑎𝑥 is renewed according to 𝑏𝑚𝑎𝑥 =

𝑏𝑚𝑎𝑥. 𝜀 , where Ɛ is a specified number from the interval of 0 and 1. During the random 

seeking, the energy function E is calculated and compared with the previous one in every 

iteration step (ΔE). The acceptance probability of the new model relies on the Metropolis 

criteria 

 

𝑝(∆𝐸, 𝑇) = {
1,           if  ∆𝐸 ≤ 0  

𝑒−∆𝐸 𝑇⁄ ,  otherwise
 ,                                              (38) 

 

where the model is always accepted when the value of energy function is lower in the 

new state than that of the previous one. If the energy of the new model increased, there is 

also some probability of acceptance depending on the values of energy E and control 

temperature T. If the following criteria  

𝛼 ≤ 𝑝(∆𝐸),                                                     (39) 

fulfills, the new model is accepted, else it is rejected (α is a random number generated 

with uniform probability from the interval of 0 and 1). These criteria assure the escape 

from the local minima. It was approved that the global minimum is guaranteed when the 

schedule cooling of Geman and Geman (1984) is used   

𝑇(𝑛) =
𝑇0

ln (𝑛)
(𝑛 > 1),                                           (40) 

 

where T0 represents the initial temperature. The SA algorithm is very effective, but the 

logarithmic reduction of temperature in equation (40) is rather time consuming. Various 

attempts were made to shorten the CPU time. Ingber (1989) proposed a modified SA 

algorithm called very fast simulated re-annealing (VFSR). Consider different ranges of 

variation for each model parameter 

𝑚𝑖
𝑚𝑖𝑛 =≤ 𝑚𝑖

(𝑛)
≤ 𝑚𝑖

𝑚𝑎𝑥.                                      (41) 

 

 

The perturbation of the i-th model parameter at iteration (n + 1) is as follows 

 

𝑚𝑖
(𝑛+1)

= 𝑚𝑖
𝑛 + 𝑦𝑖(𝑚𝑖

𝑚𝑎𝑥 − 𝑚𝑖
𝑚𝑖𝑛),                               (42) 
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where yi is a random number between −1 and 1 generated from a specified non-uniform 

probability distribution function. The global optimum is guaranteed the i-th cooling 

schedule being as the following 

𝑇𝑖(𝑛) = 𝑇0,𝑖 exp(−𝑐𝑖 √𝑘
𝑝

),                                              (43) 

where T0,i is the initial temperature of the i-th model parameter, ci is the i-th control 

parameter, and P is the number of model parameters. The acceptance rule of the VFSR 

algorithm is the same as that used in Metropolis SA method, but the exponential cooling 

schedule declares much faster convergence to the global optimum than the logarithmic 

one. A detailed workflow of the SA process can be seen in Fig. 27. 

 

4.2 Synthetic modeling experiments  

To test the performance of the developed 2D interval inversion algorithm 

numerical experiments were made on synthetic models. The inversion of noisy simulated 

borehole data sets reveals how the procedure returns to a precisely known target model. 

For the accuracy and reliability of the 2D inversion method numerical test parameters 

such as data and model distance have been calculated. The approach of the 2D interval 

inversion is to determine vertical and lateral variation of petrophysical parameters with 

fixed values of layer boundaries. Two Models A and B are used in the study relating to 

water and hydrocarbon-bearing reservoirs. In both cases synthetic well-logging data were 

generated by means of Gearhart Ultra response equations (Alberty and Hashmy 1984).  

4.2.1 Inversion over 2D shaly water-bearing sand model  

A two-layered anticline structure made up of shale and water-bearing sand Model 

A was used in the first investigation. To simulate real measurements the synthetic data 

are calculated in six wells (W-1,…, W-6) with dz =0.1 m sampling interval. The interval 

length is about 20 m, and 5% Gaussian distributed noise are added to N =12,060 data 

samples. The targeted petrophysical parameters are provided in Table 7 while the 

volumetric fractions and the processed well logs type are illustrated in Figs. 28-34. 
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Fig. 27 The process flow diagram of SA algorithm 

 

Table 7 Petrophysical parameters of Model A given in v/v 

Layer Parameter  W-1 W-2 W-3 W-4 W-5 W-6 

1 shale POR  0.10 0.11 0.09 0.10 0.08 0.12 

SX0 1.0 1.0 1.0 1.0 1.0 1.0 

SW 1.0 1.0 1.0 1.0 1.0 1.0 

VSH 0.73 0.71 0.72 0.70 0.72 0.75 

2 sand- 

water 

 

POR  0.22 0.24 0.23 0.25 0.24 0.26 

SX0 1.0 1.0 1.0 1.0 1.0 1.0 

SW 1.0 1.0 1.0 1.0 1.0 1.0 

VSH 0.10 0.12 0.11 0.13 0.12 0.14 
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Fig. 28 Volumetric parameters of each well for computing the simulated logs of Model A 
 
 
 

 

Fig. 29 Simulated logs (5% Gaussian distributed noise) of Model A in well 1 
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Fig. 30 Simulated logs (5% Gaussian distributed noise) of Model A in well 2 

 
 

 

Fig. 31 Simulated logs (5% Gaussian distributed noise) of Model A in well 3 

 

 

 

 

 

 

 

DOI: 10.14750/ME.2022.027



CHAPTER FOUR 

 

 
41 

 

 

Fig. 32 Simulated logs (5% Gaussian distributed noise) of Model A in well 4 

 

 

 

Fig. 33 Simulated logs (5% Gaussian distributed noise) of Model A in well 5 
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Fig. 34 Simulated logs (5% Gaussian distributed noise) of Model A in well 6 

The estimated model vector in equation (1) contained the series expansion 

coefficients of the petrophysical parameters with fixed values of layer coordinates. Two 

parameters (porosity and volume of shale) to be estimated along a profile comprised of 

six wells. For our 2D case the polynomials degree is settled as 5 and the initial values of 

porosity and volume of shale are chosen as 0.02 and 0.70 for the first layer and 0.2 and 

0.1 for the second one respectively. The number of unknowns (expansion coefficients) M 

are 24, resulting in a very high overdetermination ratio 502. The main component of rock 

matrix was quartz (VSD), which could be computed by the material balance equation out 

of inversion (equation 3). The development of convergence during the inversion 

procedure is shown in Fig. 35 and the optimum value was found at Dd =4.1 percent data 

and Dm =1.9 percent model distance. The estimated values are summarized in Table 8 

also the targeted values and its estimated one are also illustrated in the form of 2D model 

Figs. 36-38.  

 

  Table 8 Petrophysical parameters of Model A estimated by 2D interval inversion. The 

dimensional units are v/v 

layer Parameter W-1 W-2 W-3 W-4 W-5 W-6 

1 shale POR 0.097 0.098 0.091 0.098 0.093 0.123 

VSH 0.734 0.714 0.704 0.703 0.712 0.744 

2 sand 

water 

POR 0.221 0.240 0.235 0.246 0.241 0.261 

VSH 0.098 0.120 0.112 0.114 0.121 0.140 
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Fig. 35 Development of convergence during the 2D interval inversion procedure. a)  

Data distance vs. iteration step, b) Model distance vs. iteration step 
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Fig. 36 a) 2D models of target porosity, b) the estimated one by 2D interval inversion 
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Fig. 37 a) 2D models of target shale content, b) the estimated one by 2D interval 

inversion 
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Fig. 38 a) 2D models of target sand content, b) the estimated one directly derived by the 

inversion results 

 

4.2.2 Inversion over 2D shaly hydrocarbon-bearing sand model  

In the second case our  Model B was a two-layered  structure made of shale and 

hydrocarbon-bearing sand. I increased the number of petrophysical unknowns of the 2D 

interval inversion problem which may cause a slight decrease of the overdetermination 

ratio. The target parameters of the model are shown in Table 9. Same procedures of 

Model A are followed to simulate the real measurements and the representation of the 
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volumetric fractions with the computed simulated logs can be seen in Figs. 39-45. Three 

parameters to be estimated including porosity, water saturation in uninvaded zone and 

volume of shale. Thus, the number of unknowns M=36 and the overdetermination ratio is 

335. The volume of quartz (VSD) possibly will be also obtained by the material balance 

equation out of inversion. Another important parameters underlying the calculation of 

hydrocarbon reserves could be obtained such as irreducible (𝑆ℎ𝑐,𝑖𝑟𝑟) and movable 

(𝑆ℎ𝑐,𝑚𝑜𝑣) hydrocarbon saturations by using equations (19) and (20) also absolute 

permeability (K) of Timur (1968) is derived by using the following equation (mD) 

K = 0.136 
𝑃𝑂𝑅4.4

𝑆𝑤,𝑖𝑟𝑟
0.2  ,                                                 (44) 

where 𝑆𝑤,𝑖𝑟𝑟  = 0.2 v/v denotes the bound water saturation. Water saturation (Sx0) in the 

disturbed zone was computed by Sx0=Sw
0.2, which is based on huge amount of 

observations of well log analysts in Miocene gas reservoirs of the Pannonian basin (the 

exponent of Sw may change between1/2 and 1/5). 

 

 

Table 9 Target petrophysical parameters of Model B given in v/v 

Layer Parameter W-1 W-2 W-3 W-4 W-5 W-6 

1 shale POR 0.10 0.09 0.07 0.10 0.08 0. 11 

SX0 1.0 1.0 1.0 1.0 1.0 1.0 

VSH 0.71 0.70 0.72 0.69 0.70 0.74 

2 gas- 

sand 

POR 0.23 0.22 0.25 0.24 0.26 0.27 

SX0 0.80 0.82 0.81 0.80 0.83 0.84 

VSH 0.10 0.09 0.11 0.10 0.12 0.13 
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Fig. 39 Volumetric parameters of each well for calculating the simulated logs of Model 

B 

 

 

Fig. 40 Simulated logs (5% Gaussian distributed noise) of Model B in well 1 
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Fig. 41 Simulated logs (5% Gaussian distributed noise) of Model B in well 2 

 

 

Fig. 42 Simulated logs (5% Gaussian distributed noise) of Model B in well 3 
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Fig. 43 Simulated logs (5% Gaussian distributed noise) of Model B well 4 

 

 

Fig 44 Simulated logs (5% Gaussian distributed noise) of Model B in well 5 
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Fig. 45 Simulated logs (5% Gaussian distributed noise) of Model B in well 6 

 

By using 4-degree Legendre polynomials and carefully selected initial values of 

porosity, water saturation and volume of shale (0.09, 1.0 and 0.80) for the first layer and 

(0.25, 0.34 and 0.08) for the second layer the 2D interval inversion procedure proved to 

be stable and convergent. The development of convergence can be seen in Fig. 46, 

revealing the escaping from several minima during the inversion procedures (for 

instance, after 100-th iteration). The best solution was obtained at Dd= 5.1 percent data 

and Dm = 3.7 percent model distance. Table 10 shows good determination of the 

petrophysical parameters. 2D illustrations of the targeted parameters and the estimated 

one can be seen in Figs. 46-48. 

 

Table 10 Petrophysical parameters of Model B estimated by 2D interval inversion. The 

dimensional units are v/v 

Layer Parameter W-1 W-2 W-3 W-4 W-5 W-6 

1 shale POR 0.100 0.085 0.081 0.91 0.083 0. 111 

SX0 1.001 0.998 1.000 0.999 0.996 1.005 

VSH 0.708 0.698 0.714 0.702 0.703 0.75 

2 gas- 

sand 

POR 0.230 0.218 0.239 0.246 0.254 0.269 

SX0 0.811 0.809 0.812 0.809 0.822 0.842 

VSH 0.096 0.096 0.099 0.106 0.118 0.132 
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Fig. 46 Development of convergence during 2D interval inversion procedure. a)  Data 

distance vs. iteration step, b) Model distance vs. iteration step 
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Fig. 47 a) 2D models of target porosity, b) the estimated one by 2D interval inversion 
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Fig. 48 a) 2D models of target water saturation, b) the estimated one by 2D interval 

inversion 
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Fig. 49 a) 2D models of target shale content, b) the estimated one by 2D interval 

inversion  
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Non-inversion parameters derived from 2D interval inversion results were also 

accurately estimated. The targeted and estimated parameters can be checked in Tables 11 

and 12, respectively. 

 

 

Table 11 Targeted parameters derived from the interval inversion results   

 

Layer  Parameter W-1 W-2 W-3 W-4 W-5 W-6 

1 VSD 0.19 0.21 0.21 0.21 0.22 0.15 

SW 1.0 1.0 1.0 1.0 1.0 1.0 

Shc,irr 0.0 0.0 0.0 0.0 0.0 0.0 

Shc,mv 0.0 0.0 0.0 0.0 0.0 0.0 

K 8.0 mD 5.0 mD 2.0 mD 8.0 mD 3.0  mD 13.0 mD 

2 VSD 0.67 0.69 0.64 0.66 0.62 0.6 

SW 0.327 0.37 0.348 0.327 0.39 0.418 

Shc,irr 0.20 0.18 0.19 0.20 0.17 0.16 

Shc,mv 0.473 0.45 0.462 0.45 0.44 0.422 

K 333 mD 274 mD 481 mD 402 mD 571 mD 675 mD 

 

 

 

Table 12 Estimated parameters derived from interval inversion results 
 

Layer  Parameter W-1 W-2 W-3 W-4 W-5 W-6 

1 VSD 0.192 0.217 0.205 0.207 0.214 0.139 

SW 1.005 0.99 1.0 0.995 0.98 1.02 

Shc,irr 0.0 0.0 0.0 0.0 0.0 0.0 

Shc,mv 0.0 0.0 0.0 0.0 0.0 0.0 

K 8.0 mD 4.5 mD 4.0 mD 5.0 mD 4.0  mD 14.0 mD 

2 VSD 0.674 0.686 0.662 0.648 0.628 0.599 

SW 0.35 0.346 0.353 0.346 0.375 0.423 

Shc,irr 0.189 0.191 0.188 0.191 0.178 0.158 

Shc,mv 0.468 0.472 0.465 0.472 0.443 0.419 

K 333 mD 308 mD 417 mD 490 mD 563 mD 695 mD 

 

 

4.3 Stability test of inversion procedures  

To check the stability of 2D interval inversion procedures 10 independent 

program runs were performed in both Models A and B, respectively. The data distance 

convergences to the optimal value in all 10 runs are illustrated in Fig. 50, which supports 

the findings that metaheuristic methods can be effectively used to eliminate the starting 

model dependence of inverse problems (Pace et al. 2019). Also, escaping from several 
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local minimums during global optimization can be observed until the optimum solution 

is reached. The data distance after the 1000-th iteration step is slightly lower for Model 

A than for Model B, indicating a slight model dependence. The computed average data 

distances for both Models A and B are 4.13 and 5.18, with average standard deviations 

of 0.0012 and 0.0014, respectively. This demonstrates the effectiveness of the simulated 

annealing method for solving the 2D inverse problem in stable procedures. 

 
 

Fig. 50 Convergence plots of the 2D interval inversion procedure for 10 independent 

runs a) Model A, b) Model B 
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4.4 In-situ results 

It is reasonable to apply the proposed method to field data following assessing it 

on the simulated examples. As a consequence, the 2D interval inversion approach was 

used to process in situ-well logging measurements obtained in four boreholes, W-1–W-4, 

located in an Egyptian hydrocarbon field Fig. 26. The available data samples 

corresponding to given gamma-ray (GR), shallow resistivity "Rs", deep resistivity "Rd ", 

bulk Density  "𝜌𝑏", and neutron-porosity "∅𝑁". The maximum number of iterations for 

the inversion operation was 5000. In the first layer, the initial values of the expansion 

coefficients for porosity, water saturation, and shale content are 0.25, 0.40, and 0.09, 

respectively. In the second, they are 0.16, 0.1, and 0.7, and in the third, they are 0.23, 

0.4, and 0.08.The solution was observed at Dd= 6.4 % relative data distance Fig. 51. The 

estimated petrophysical parameters are summarized in Table 13.  

 
Fig. 51 Convergence plot of the processed Egyptian field data by 2D interval inversion 

method, the average data distance vs. number of iterations 

Table 13 Petrophysical parameters of Egyptian hydrocarbon structure estimated by 2D 

interval inversion 

Layer  Parameter  W-1 W-2 W-3 W-4 

1gas-sand POR 0.228 0.234 0.246 0.262 

SX0 0.840 0.847 0.856 0.860 

VSH 0.115 0.122 0.136 0.144 

2 shale POR 0.024 0.050 0.085 0.111 

SX0 0.995 0.985 0.994 1.0 

VSH 0.621 0.604 0.619 0.669 
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3 gas-sand POR 0.246 0.223 0.231 0.258 

SX0 0.815 0.835 0.852 0.876 

VSH 0.123 0.129 0.141 0.165 

 

4.5 Discussion 

 For determining the lateral variation of petrophysical parameters, a 2D 

Legendre polynomials-based interval inversion approach is demonstrated. The simulated 

annealing technique is used to solve the inversion algorithm, which assigns the solution 

to the global optimum. The petrophysical parameters are derived from the coefficients of 

series expansion. To evaluate the modified method, simulated measurements 

contaminated with 5% Gaussian distributed noise of two Models A and B made of 

groundwater and hydrocarbon bearing zones are generated. The data and model misfits 

are tested to ensure the inversion procedures' stability and convergence. In the case of the 

proposed Models, I was able to successfully estimate the lateral variations of the 

petrophysical parameters. Furthermore, the program's stability was tested by running it 

ten times independently and calculating the average data distance and standard deviation. 

The method's feasibility is demonstrated by analyzing in-situ well logging data from four 

wells in an Egyptian hydrocarbon field. 

Thesis three  

I developed a 2D Legendre polynomials-based interval inversion approach for 

determining lateral varying of petrophysical parameters. I assessed the method by using 

noisy simulated measurements on petrophysical Models made of two-layer structures 

related to groundwater and hydrocarbon bearing formations. The numerical experiments 

aided to investigate the stability and convergence of the 2D interval inversion procedure. 

To ensure the accuracy and reliability of the inversion results, the misfit of data and 

model distance are tested. A large amount of input data relative to the number of 

unknown results in a high overdetermination ratio, consequently more reliable estimates 

are obtained in stable and convergent procedure than in conventional local (1D) 

inversion schemes. I applied global optimization technique to get the best fit between the 

measured and calculated data. The feasibility of the 2D interval inversion method is 

shown by analysing in-situ well logging data acquired in four wells situated in Egyptian 

hydrocarbon field. 

 

DOI: 10.14750/ME.2022.027



CHAPTER FIVE 

 

 
60 

 

5. INTERVAL INVERSION OF MULTI-WELL LOGGING DATA FOR 

ESTIMATING SIMULTANEOUSLY LATERALLY VARYING 

PETROPHYSICAL PARAMETERS AND FORMATION BOUNDARIES 

 

In view of the great benefits of the interval inversion algorithm in separately 

determining the lateral variation of layer boundary coordinates, the vertical and lateral 

variations of petrophysical parameters, I improved the algorithm that is capable of 

determining both in a joint inversion process. Accordingly, the model vector comprised 

the series expansion coefficients of the petrophysical parameters besides the layer 

thicknesses. The inverse problem solved by the simulated algorithm. The reliability and 

accuracy of inversion results is checked by measuring the misfit between measured and 

calculated data and goodness of model fit as well.  

5.1 Numerical results  

The improved algorithm is tested on the same two Models A and B which used in 

the previous chapter. In case of the Model A Fig. 52. The targeted unknowns can be seen 

in Table 14. The initial model comprised first-guess values of petrophysical parameters 

and H1(x) =10 planar layer boundary which are discretized by using Legendre 

polynomials up of 4 degrees as basis function. The development of convergence during 

the inversion process is illustrated in Fig. 53. The optimum solution was found at Dd = 

4.5 percent data distance and Dm= 3.4 percent model distance. The estimated unknowns 

of layer boundary coordinates and petrophysical parameters are summarized in Table 15. 

The upper boundary of the water bearing sand zone is corresponding to the last 

expansion coefficient reveals detected depth of 10.05 m.   

 

   Table 14 Targeted unknowns of Model A  

Layer Parameter W-1 W-2 W-3 W-4 W-6 W-5 

1 POR 0.10 0.11 0.09 0.10 0.08 0.12 

VSH 0.73 0.71 0.72 0.70 0.72 0.75 

2 POR 0.22 0.24 0.23 0.25 0.24 0.26 

 VSH 0.10 0.12 0.11 0.13 0.12 0.14 

Boundary H1(X) 10.0 5.0 15.0 15.0 5.0 10.0 
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Fig. 52 2D lithological model showing the target, initial, and estimated thickness 

function 

 

Table 15 Petrophysical parameters and layer-boundary coordinates of Model A estimated 

by 2D interval inversion 

Layer Parameter W-1 W-2 W-3 W-4 W-6 W-5 

1 POR 0.099 0.099 0.092 0.099 0.093 0.118 

VSH 0.738 0.713 0.699 0.699 0.715 0.755 

2 POR 0.222 0.239 0.242 0.239 0.242 0.262 

 VSH 0.105 0.116 0.111 0.117 0.118 0.139 

Boundary H1(x) 10.05 5.0 15.01 15.01 5.0 10.05 
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Fig. 53 Development of convergence during 2D interval inversion procedure. a) Data 

distance vs. iteration step, b) Model distance vs. iteration step 

 

As a next strategy, I applied the improved inversion algorithm for Model B given 

in Fig. 54. The model parameters (Ø, Sx0 and Vsh) with layer boundaries were discretized 

by using Legendre polynomials of up to 4 degree as basis functions. In this case, the 

number of unknowns (expansion coefficients) was 35, delivering an overdetermination 

ratio of 344. Despite the increase of the unknowns, the overdetermination ratio is still 

high due to the large amount of input datasets, resulting in stable and convergence 

inversion procedures. The targeted parameters of the model can be checked in Table 16.  

The initial model comprised first-guess values of petrophysical parameters and 

H1(x) = 4 m planar layer boundary. The development of convergence during the 

inversion process is illustrated in Fig. 55. The optimum solution was found at Dd = 5.1 

percent data distance and Dm = 4.9 percent model distance. The estimated unknowns of 

layer boundary coordinates and petrophysical parameters are summarized in Table 17. 

The upper boundary of the hydrocarbon bearing sand zone has detected depth of 4.07 m.   
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   Table 16 Targeted unknowns of Model B  

Layer Parameter W-1 W-2 W-3 W-4 W-6 W-5 

1 POR 0.09 0.10 0.07 0.09 0.08 0.11 

SX0 1.0 1.0 1.0 1.0 1.0 1.0 

VSH 0.79 0.80 0.78 0.79 0.81 0.82 

2 POR 0.32 0.30 0.29 0.31 0.30 0.33 

SX0 0.80 0.82 0.81 0.80 0.83 0.84 

VSH 0.10 0.08 0.09 0.07 0.09 0.11 

Boundary H1(x) 17.0 14.0 13.0 10.0 7.0 4.0 

 

 

 

Fig. 54 2D lithological model showing the target, initial and estimated layer thickness 

function 
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Table 17 Petrophysical parameters and layer boundary coordinates of Model B estimated 

by 2D interval inversion (polynomials degree is n= 4) 

Layer Parameter W-1 W-2 W-3 W-4 W-6 W-5 

1 POR 0.102 0.088 0.089 0.090 0.089 0.111 

SX0 0.997 0.995 0.997 0.996 0.994 1.005 

VSH 0.713 0.702 0.716 0.694 0.700 0.739 

2 POR 0.234 0.224 0.239 0.245 0.253 0.266 

SX0 0.808 0.816 0.805 0.809 0.827 0.846 

VSH 0.094 0.096 0.101 0.107 0.116 0.128 

Boundary H1(x) 17.07 14.03 13.02 10.02 7.03 4.07 

 

 
 

Fig. 55 Development of convergence during 2D interval inversion 

procedure(polynomials degree is n= 4). a) Data distance vs. iteration step, b) Model 

distance vs. iteration step 
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It worth to be noting that describing fine structures and sudden changes require 

more series coefficients which can be achieved by increasing the polynomials degree in 

equation (14). In the simulated modeling of Model B by increasing the polynomials 

degree to 10, the number of unknowns to be estimated are increased up to 77, resulting in 

decrease of the overdetermined ratio, which may negatively affect the quality of 

inversion results. However, owing to a large number of inverted data, we could obtain 

reasonable results as seen in Table 18. The data and model distances are illustrated in 

Fig. 56, also the 2D cross-section of petrophysical parameters is shown in Fig 57. 

 

 

Table 18 Petrophysical parameters and layer boundary coordinates of Model B estimated 

by 2D interval inversion (polynomials degree is n=10) 

Layer Parameter W-1 W-2 W-3 W-4 W-6 W-5 

1 POR 0.092 0.088 0.083 0.093 0.086 0.126 

SX0 1.002 0.998 0.995 1.000 0.997 1.002 

VSH 0.709 0.702 0.717 0.687 0.700 0.758 

2 POR 0.225 0.225 0.232 0.237 0.247 0.273 

SX0 0.801 0.823 0.812 0.811 0.824 0.842 

VSH 0.098 0.101 0.106 0.101 0.114 0.134 

Boundary H1(x) 17.17 14.01 13.04 10.04 7.01 4.17 
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Fig. 56 Development of convergence during 2D interval inversion procedure 

(polynomials degree is n=10). a) Data distance vs. iteration step, b) Model distance vs. 

iteration step 

 

 

 

 

 

 

 

 

 

 

 

DOI: 10.14750/ME.2022.027



CHAPTER FIVE 

 

 
67 

 

 

 

Fig. 57. Results of 2D inversion in drill holes W1-W6 with 10 polynomials degree of 

Model B : a) porosity b) water saturation c) shale content 
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5.2 Field test  

By using the same measurements of the Egyptian hydrocarbon field, the 

maximum number of iterations for the global optimization based-inversion operation was 

5000. In the first layer, the initial values of the expansion coefficients for porosity, water 

saturation, and shale content are 0.25, 0.40, and 0.09, respectively. In the second, they 

are 0.16, 0.1, and 0.7, and in the third, they are 0.23, 0.4, and 0.08. Regarding layer 

boundaries, H1(x)= 4 m and H2(x)=12 m. The solution was observed at Dd= 6.5 % 

relative data distance Fig. 58. The estimated model parameters and layer-boundary 

coordinates are provided in Table 19. Further, 2D models of the results are illustrated in 

Fig. 59. It can be noticed that the investigated interval revealed two types of lithology, 

i.e., sand and shale. Two hydrocarbon-bearing zones are well defined, the lower 

boundary of the first zone is at depth 4m and the upper boundary for the second zone is 

detected at depth 12m.  The interpreted lithological results are well supported by the 

geological and stratigraphic settings of the investigated area which is a half-graben 

system filled with thick non-marine sediments deposited during Early Cretaceous 

(Hauterivian to Barremian) followed by marine deposition during Albian/Cenomanian 

(argillaceous sandstones and shales) and later shales and marine limestones during Late 

Cretaceous and early Tertiary (Dolson et al. 1999). Furthermore, the estimated 

petrophysical parameters utilizing 2D interval inversion showed a close agreement with 

the results of previous studies by using traditional analysis (Ali 2015; Othman et al. 

2015; Senosy et al. 2020). In case of using higher polynomial degree (n=8), considerable 

estimates of the petrophysical parameters and layer-boundary coordinates are also 

obtained Table 20. The convergence plot during the inversion procedures is shown in 

Fig. 60. A glance to the convergence plots of inversion procedures for field 

measurement, the data distance is slightly higher than for simulated models. This may be 

attributed to the reservoir conditions and the investigated depths. It worth to noting that 

the computed sand  porosity at 0 shale effective porosity correspondent to the expected 

porosity according to supposed depth dependent compaction trend.  The upper sand-gas 

shows a higher porosity values. The larger values may be result of a chemical dissolution 

process during migration of  hydrocarbon. There is a strict connection in generation 

between lower and upper gas sand by migration through shale layer.  
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Fig. 58 Convergence plot of the processed Egyptian field data by 2D interval   

inversion method, the average data distance vs. number of iterations 

 

Table 19 Estimated petrophysical parameters and layer boundary coordinates of 

Egyptian field data by 2D interval inversion method 

Layer  Parameter  W-1 W-2 W-3 W-4 

1gas-sand POR 0.225  0.237  0.248  0.26    

SX0 0.838  0.843  0.850 0.858  

VSH 0.114  0.125  0.136  0.147  

2 shale POR 0.026  0.05    0.082  0.11   

SX0 0.996  0.991  0.987 1.00   

VSH 0.626  0.60    0.617  0.66   

3 gas-sand POR 0.241  0.223  0.229  0.259  

SX0 0.815  0.831  0.852  0.874  

VSH 0.127  0.126  0.138  0.163  

Boundary  H1(x)  7.0 8.33   7.33 4.0 

H2 (x) 12.5 10.5  10.5 12.0 
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Fig. 59 Results of 2D inversion in drill holes W1-W4: a) porosity b) water saturation c) 

shale content 
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Table 20 Estimated petrophysical parameters and layer boundary coordinates of 

Egyptian field data by 2D interval inversion method (polynomials degree is n=8) 

Layer  Parameter  W-1 W-2 W-3 W-4 

1gas-sand POR 0.234 0.227  0.236  0.265    

SX0 0.836  0.819  0.843 0.861  

VSH 0.088 0.125  0.097 0.139  

2 shale POR 0.044 0.073    0.071  0.10   

SX0 0.981 0.982  0.994 1.00   

VSH 0.636  0.62    0.625  0.690   

3 gas-sand POR 0.212 0.220  0.229  0.253  

SX0 0.825  0.831  0.853 0.864  

VSH 0.113  0.137  0.116  0.157  

Boundary  H1(x)  7.0 8.34   7.34   4.0 

H2 (x) 12.51 10.50 10.50 12.01 

 

 

 

 

Fig. 60 Convergence plot of the processed Egyptian field data by 2D interval   

inversion method, the average data distance vs. number of iterations (polynomial degree 

is n = 8) 
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5.3 Discussion 

In the present chapter, I showed a newly developed 2D interval inversion 

approach for evaluating 2D petrophysical models. The proposed method allows for the 

determination of lateral changes of layer boundaries as well as the lateral and vertical 

variation of the petrophysical parameters along borehole profile in stable and convergent 

procedures. Accordingly, two-dimensional models were created, the geometry of the 

geological structures and the morphology of hydrocarbon reservoirs were well defined as 

well. The feasibility of the modified method was verified on simulated and Egyptian 

field data related to hydrocarbon bearing formations. With setting a high 

overdetermination ratio which considered the essential features of the interval inversion 

method, I successfully estimated the model parameters of synthetic models built up of 

two-layer structures. Also, reliable results were obtained in case of multi-layers 

application of Egyptian field data. 

Thesis four 

I further developed the 2D Legendre polynomials-based interval inversion 

algorithm which allows the determination of lateral changes of the layer-boundary 

coordinates together with the vertical and lateral variations of petrophysical parameters 

along a 2D cross-section of several boreholes. The method is assessed using noisy 

simulated measurements on petrophysical models made of two-layer structures related to 

groundwater and hydrocarbon bearing formations. The numerical experiments aided to 

confirm the stability and convergence of the inversion procedure. To test the accuracy 

and reliability of the inversion results, the misfit of data and model distance are tested. 

The feasibility of the 2D interval inversion method is shown by analysing in situ well 

logging data acquired in four wells situated in Egyptian hydrocarbon field. 
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6. CHARACTERIZING THE QUALITY OF THE ESTIMATED PARAMETERS  
 

The measurement data are always contaminated by a certain quantity of noise. 

The measuring errors can be systematic or random. The former can be generally treated 

well, while the calculation of the latter is of great importance in the practice of 

geophysical inversion. The general equation 

𝐦 = 𝐆−𝐠𝐝(m)                                                         (45) 

shows the transformation of data to the model space. According to that data noise also 

will be mapped into the model space. The uncertainty of data causes the appearance of 

errors in parameter estimation. Several ways can be used to quantify the estimation 

errors in the inversion procedure. In the last chapters the misfit of data and model 

distance are tested for this purpose. Here, I implement the discrete inverse theory (Menke 

1984) for calculating estimation errors of parameters and correlation coefficients. 

Detailed explanation can be seen in chapter two (Section 2.1).  As a result, after reaching 

the near vicinity of the optimum via the VFSA algorithm and for quality assurance on 

inversion results, I switched to the DLSQ for performing linear optimization. At the end of 

the procedure, the estimation errors and correlation coefficients can be computed, besides 

estimating the errors of the estimated expansion coefficients by using equation (15), I can 

ensure the reliability and accuracy of the obtained results. Thus, a detailed flow chart which 

summarized the full procedures of the hybrid optimization method is shown in Fig. 61. 

It must be mentioned that a realistic estimation for the accuracy of inversion 

results can only be given in the knowledge of the full data covariance matrix (in equation 

(15)). Since well logging operations lack the repetition of measurements, we do have 

only approximate information of the error of the observed quantities. Moreover, the 

unknown modeling error coming from the simplified equations (27)-(36) is also added to 

the variance of input data. In the industry, generally the data are considered uncorrelated 

and of the same variance. In the proposed methodology, it is allowed to incorporate the 

full covariance matrix of well logging parameters (if it is measured) to improve the 

reliability of error estimation.  

6.1 Reliability of synthetic results  

In case of Model A, the estimated expansion coefficients and their errors are 

illustrated in Fig. 62. The standard deviation in case of layer boundary coordinates is 

smaller than the standard deviation of petrophysical parameters in both models. Very 
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minimum estimated errors of the petrophysical parameters also of the model can be seen 

in the 2D error models Fig. 63. For the second Model B the expansion coefficients error 

and the 2D petrophysical parameter errors can be checked in Figs. 64 and 65. The mean 

spread value of their correlation coefficients are S = 0.37 and 0.32 for Models A and B 

respectively, which indicate poorly correlated expansion coefficients and highly reliable 

inversion results. 

6.2 Reliability of Egyptian field results 

After quantifying the accuracy of the synthetic examples, it’s important to check 

the estimated results of the Egyptian field measurements. The estimated model 

parameters and their estimation errors are provided in Table 21; together with the 

calculated mean spread value which was 0.31 confirm the inversion results 

dependability. 

 

 
 

Fig. 61 Flowchart illustrating the interval inversion procedure using a hybrid 

VFSA+DLSQ optimization 
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Fig. 62 Results of interval inversion procedure using Legendre polynomials of 4 degrees 

as basis functions of Model A in well 1-6. Estimated values of expansion coefficients for 

(a) porosity in layer 1, (b) shale content in layer 1, (c) porosity in layer 2 , (d) shale 

content in layer 2, (e) layer boundary coordinates 
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Fig. 63 Results of estimation errors by 2D hybrid VFSA+DLSQ interval inversion in 

drill holes W1-W6 of Model A for a) porosity, b) shale content  
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Fig. 64 Results of interval inversion procedure using Legendre polynomials of 4 degrees 

as basis functions of Model B in well 1-6. Estimated values of expansion coefficients for 

(a) porosity in layer 1, (b) water saturation of uninvaded zone in layer 1, (c) shale content 

in layer 1, (d) porosity in layer 2, (e) water saturation of uninvaded zone in layer 2, (f) 

shale content in layer 2, (g) layer boundary coordinates 
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Fig. 65 Results of estimation errors by 2D hybrid VFSA+DLSQ interval inversion in 

drill holes W1-W6 of Model B for a) porosity, b) water saturation, c) shale content  
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Table 21 Estimated Parameters of Egyptian field data and their errors by 2D inversion  

Layer  Parameter  W-1 W-2 W-3 W-4 

1 POR 0.225 

(± 0.002) 

0.237 

(± 0.001) 

0.248 

(± 0.002) 

0.26 

(± 0.002) 

SX0 0.838 

(± 0.003) 

0.843 

(± 0.001) 

0.850 

(± 0.002) 

0.858 

(± 0.002) 

VSH 0.114  

(± 0.006) 

0.125  

(± 0.008) 

0.136 

(± 0.005) 

0.147  

(± 0.001) 

1 POR 0.026 

(± 0.04) 

0.05 

(± 0.007) 

0.082 

(± 0.01) 

0.11 

(± 0.006) 

SX0 0.996 

(± 0.0005) 

0.991 

(± 0.001) 

0.987 

(± 0.0007) 

1.00  

(± 0.002) 

VSH 0.626 

(± 0.001) 

0.60  

(± 0.001) 

0.617 

(± 0.001) 

0.66 

(± 0.001) 

3 POR 0.241 

(± 0.004) 

0.223 

(± 0.002) 

0.229 

(± 0.002) 

0.259 

(± 0.003) 

SX0 0.815 

(± 0.001) 

0.831  

(± 0.002) 

0.852 

(± 0.001) 

0.874 

(± 0.002) 

VSH 0.127 

(± 0.009) 

0.126 

(± 0.006) 

0.138  

(± 0.005) 

0.163 

(± 0.007) 

 

6.3 Discussion 

Several ways can be used for characterizing the accuracy and reliability of the 

inversion procedures. Besides, misfit of data and model distance which are briefly 

computed in the last chapters (four and five), the estimation errors and correlation 

coefficients which are deeply considered in this chapter. To calculate the estimation 

errors and the correlation coefficients of the petrophysical parameters I switched the 

program which starts with VFSA to Damped Least Squares (DLSQ) in order to perform 

linear optimization. I successfully ensure the quality of the results at the end of the 

procedures. 

Thesis five  

To measure the accuracy of the inversion results, I further developed the global 

inversion method.  I suggested a hybrid 2D inversion technique VFSA+DLSQ for 

minimization the inverse problem. At the end of linear inversion phase, I could 

characterize the estimation error and reliability of estimation by the elements of the 

model covariance matrix and correlation coefficients, separately. I tested the hybrid 

inversion method on simulated datasets of the utilized two Models A and B in my study. 

Furthermore, the feasibility of the method is shown by evaluating Egyptian field data.  
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7. CONCLUSIONS 

This section involved a detailed review about my PhD studies which are related 

to geophysical inversion developments of well logging datasets. The work was 

conducted at the Department of Geophysics, Faculty of Earth Science and Engineering, 

University of Miskolc. The main purposes of my PhD thesis were to develop the interval 

inversion methods for reliable estimation for one-and two-dimensional petrophysical 

parameters distributions. The majority of the developments are associated with 

processing of multi-borehole logging data. All method developments described in the 

thesis were performed by utilizing MATLAB programming language. 

For the 1D case, I have developed the Chebyshev polynomials-based interval 

inversion approach to characterize the reservoir rock in Komombo basin, Upper Egypt. I 

used a new alternative basis function (Chebyshev polynomials) for discretizing the 

model parameters. The modified method shows a consistent estimation of the 

petrophysical parameters such as porosity, water saturation in invaded and uninvaded 

zones and volume of shale of Abu Ballas reservoir. I checked the reliability of the results 

by using a variety of quality techniques that include measuring misfit between the field 

data and the calculated one, calculating error estimation and correlation coefficients. In 

addition, I derived the hydrocarbon saturation in the form of irreducible and movable of 

the investigated reservoir.  

The 2D case involves a suit of improved algorithms that help in evaluating the 

two- dimensional petrophysical models. Initially and considering the estimation of lateral 

changes of layer boundary coordinates I developed a Legendre polynomials-based 

interval inversion approach. I solved the inverse problem by applying linear 

optimization-based Marquardt technique (DLSQ). I utilized simulated measurements of 

multi-layer structures related to hydrocarbon bearing formations to test the method. The 

thicknesses are obtained as quadratic values over the interval [-1, 1]. For ensuring the 

reliability of results, the errors of the estimated expansion coefficients are computed. I 

proved the feasibility of the suggested method and successfully estimated the lateral 

variation of layer boundaries of Egyptian hydrocarbon field data acquired along four 

wells with the help of series expansion-based polynomial coefficients. 

After that I was able to improve the 2D inversion method in order to determine 

vertical and lateral variation of the petrophysical parameters along a 2D cross-section of 

several boreholes.  I used the Metropolis algorithm-based simulated annealing (VFSA) to 
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estimate the series expansion coefficients which are used to derive the petrophysical 

parameters. I evaluated the proposed method by using noisy simulated measurements of 

petrophysical models made of two-layer structures related to groundwater and 

hydrocarbon bearing formations. The data and model misfits are assessed to ensure the 

inversion procedures' stability and convergence. A large amount of input data relative to 

the number of unknowns results in a high overdetermined ratio, therefore more accurate 

estimates are obtained in stable and convergent procedure than in the conventional local 

(1D) inversion schemes. The inversion method's feasibility is demonstrated by analyzing 

in-situ well logging data from four wells in an Egyptian hydrocarbon field. 

Successful estimation of both laterally varying petrophysical parameters and 

formation boundaries separately enabled me to further develop the method for 

determining both of them in a joint inversion procedure. In this case, the model vector 

comprises the series expansion coefficients of the petrophysical parameters besides the 

layer thicknesses which are estimated by using simulated annealing algorithm (VFSA). 

The feasibility of the modified method was verified on simulated and Egyptian field data 

related to hydrocarbon bearing formations. Accordingly, two-dimensional models were 

created, the geometry of the geological structures and the morphology of hydrocarbon 

reservoirs were well defined as well. After reaching the near vicinity of the optimum via 

the VFSA algorithm and for quality assurance on inversion results I switched the program 

to the DLSQ in order to perform linear optimization. I implemented Menke's (1984) 

discrete inverse theory for calculating estimation errors of parameters and correlation 

coefficients. With the minimal estimated errors and correlation coefficients in case of the 

simulated and Egyptian hydrocarbon structure, I effectively proved the efficiency of the 

hybrid algorithm (VFSA+DLSQ) in processing several neighbouring deep wells.  

Finally, in the context of my PhD thesis, I demonstrated a new perspective for 

interval inversion-based methods relating to single and multi-well data processing 

applications by using the MATLAB environment. The developed methods could 

accurately evaluate one- and two- dimensional petrophysical models. The only criterion 

for making the methods more effective and powerful is to keep the high overdetermined 

ratio. The application of the developed methods can be extended to include the 

processing of groundwater and non-conventional reservoirs on both 2D and/or 3D 

features. 
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