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ADVISOR’S FOREWORD 

 

for the (PhD) thesis 

„GLOBAL OPTIMIZATION-BASED DATA PROCESSING METHODS FOR 

ADVANCED WELL LOGGING APPLICATIONS” 

by Armand Abordán 

 

The topic of the Candidate’s thesis - inversion based geophysical data processing - 

is in focus of international research. The new method developments introduced by the 

Candidate in the thesis belong to the range of modern data processing tools of applied 

geophysics. The suggested global optimization based procedures are capable to derive the 

petrophysical parameters of geological formations in a highly accurate and reliable way, 

which is of high importance in today’s petroleum exploration and several other fields of 

geosciences, too.  

For advanced well logging applications, the author explores new opportunities for 

the further development of factor analysis and interval inversion. For improving the results 

of these multi-log interpretation procedures, he chooses the tool of global optimization. From 

the range of available techniques, he selects simulated annealing and particle swarm 

optimization, and uses them to enhance the before mentioned data processing methods. For 

improving the mathematical treatment of factor analysis, he develops alternative methods 

where the factor scores are estimated by the Metropolis simulated annealing and particle 

swarm optimization techniques. By using the results of these unique applications of global 

optimization tools, he establishes a regression model between the extracted first factor and 

the permeability of hydrocarbon-bearing formations. To validate the suggested regression 

relationship, the Candidate tests the method on Hungarian hydrocarbon bearing formations 

using in situ data. The permeability derived by the newly developed method is compared 

and successfully verified by deterministic modeling and core laboratory measurements.  

In a hyperparameter estimation approach, he generalizes the developed particle 

swarm optimization based factor analysis in regard of some of its control parameters by 

automatically selecting them in an iterative procedure by simulated annealing. Thus, there is 

no need to set them manually in the initialization phase. Moreover, to provide a fully 

optimized solution for factor analysis, the Candidate suggest the simultaneous optimization 

of both the factor scores and factor loadings in an iterative procedure using particle swarm 
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optimization to even further decrease the misfit between the observed and calculated data. 

By processing in situ data, he proves the feasibility of the suggested methods in Hungarian 

groundwater formations.  

An essential part of his thesis is connected to interval inversion, where he uses 

particle swarm optimization to eliminate the starting model dependence of the inversion 

procedure and to find the final solution he utilizes the damped least squares method, which 

enables the quantification of parameter estimation accuracy. To increase the 

overdetermination ratio of the inverse problem, he estimates shale volume prior to inversion 

by the developed factor analysis and then uses it as a known (fixed) parameter within 

inversion and thus significantly decreases the estimation error of the interval inversion 

method. This may have an impact in hydrocarbon reserve calculations, from the point of 

view of oilfield practice. 

His continuous efforts towards scientific research, his creativity, and the results 

presented in this thesis prove the scientific knowledge and the suitability of the Candidate 

for independent research. In my opinion, the Candidate’s results, especially those of related 

machine learning tools assisted inversion approaches are worth to be published in ranked 

international journals of applied geophysics.   

I certify that this dissertation contains only valid data and the presented results are 

representing the Candidate’s own work. In my opinion, it is fully adequate in scope and 

quality required by the Mikoviny Sámuel Doctoral School of Earth Sciences. Based on the 

above, I support and recommend the public defense of the thesis and the award of the PhD 

title. 

 

07/05/2020, Miskolc 

 

Dr. Norbert Péter Szabó 

             University full professor 
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INTRODUCTION 

Applied geophysics provides several methods for the quantitative evaluation of 

subsurface geological structures and finding mineral resources. The physical properties of 

subsurface formations can be studied by surveying techniques such as magnetics, gravity 

and seismics. By interpreting these physical properties, we can acquire detailed information 

of the subsurface geology, which can lead us to potential aquifers and hydrocarbon 

reservoirs. To properly assess the economic value of these formations, wireline logging 

methods must be applied (Serra 1984). Usually, electrical and elastic rock properties are 

measured along with nuclear and dimensional measurements (i.e., caliper log) in the 

wellbore. Then the recorded well logs can be used to derive the geometry (e.g., structural 

dip, layer thickness) and the petrophysical properties of the rock formations (e.g., porosity, 

shale volume, water saturation and matrix volumes), which can enable the quantitative 

assessment of hydrocarbon and mineral resources. 

Wireline logging began in 1927 when the Schlumberger brothers recorded the first 

resistivity log in France’s Pechelbronn field. Shortly after the spontaneous potential and 

natural gamma-ray logs were introduced as well. Plotting these measurements versus depth, 

the separation of permeable hydrocarbon bearing layers from non-productive ones became 

possible. This was a simple qualitative, curve-shape recognition-based approach to log 

analysis, however due to its effectiveness it was quickly adopted by the hydrocarbon 

industry. A great advancement in wireline logging was achieved when Archie (1942) 

developed an empirical relationship for estimating the water saturation from porosity and 

resistivity data, which allowed the quantitative analysis of well logs for the first time. By the 

1960s, apparent porosity was available from three independent sources (density, neutron and 

sonic logs), which were first interpreted using crossplot techniques (Asquith and Krygowski 

2004). Then with the advances in computer technology, well logs were recorded digitally 

and processed by computers (e.g., the CYBERLOOK interpretation program by 

Schlumberger) based on the crossplot techniques and on simultaneous equation solutions. In 

the 1980s, new statistics-based log analysis approaches were established for the 

interpretation of well logs. Their computer implementations allowed the log analyst to 

provide the response equations and the geophysical model instead of still relying on 

deterministic approaches as earlier programs and now these could also quantify the 

uncertainties of derived petrophysical parameters. The well-known examples are 

Schlumberger’s GLOBAL (Mayer and Sibbit 1980), OPTIMA by Baker Hughes (Ball et al. 
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1987) and Gearhart’s ULTRA (Alberty and Hashmy 1984). These systems provide a so-

called inversion based well log analysis which is superior to the conventional deterministic 

methods. The latter derive the petrophysical parameters separately from each other by single 

well log analysis, while in case of inversion based methods all the available set of 

measurements are jointly inverted to derive the model parameters simultaneously in a more 

accurate and reliable way. The petrophysical unknowns are derived in an iterative procedure 

by optimizing the misfit between the measured and calculated well logs.  

Several possible solutions are available in the literature for the wireline logging 

inverse problem (Alberty and Hashmy 1984, Ball et al. 1987, Jarzyna et al. 2002, Narayan 

and Yadav 2006). Conventionally, inversion of wireline logging data is done in a local 

manner, meaning that data measured at a given depth point is jointly inverted to estimate the 

petrophysical parameters at that same depth point (Drahos 2005, Mayer and Sibbit 1980). 

This usually leads to a marginally overdetermined inverse problem, since we have slightly 

more logging tools than unknowns, including shale volume, porosity and water saturation in 

the invaded zone and in the virgin zone. Although this can be done very quickly and delivers 

adequate results, the low data-to-unknowns ratio sets a limit on the estimation accuracy of 

parameters. A possible solution, interval inversion was developed for increasing the data-to-

unknowns ratio of the well logging inverse problem (Dobróka and Szabó 2001). This 

approach provides a significant improvement in the estimation error of model parameters 

relative to local inversion (Dobróka et al. 2016). In the interval inversion method, 

petrophysical parameters are assumed to be the functions of depth, therefore depth-

dependent probe response functions are introduced to relate the measured data to the 

unknown physical properties of geological formations of longer intervals. Then the model 

parameters are discretized by series expansion using Legendre polynomials. This way, 

inversion can be carried out simultaneously for an arbitrary long interval rather than just in 

a specific depth point. The number of observed data does not increase, but the simultaneous 

processing of several depth points greatly increases the relative number of data compared to 

series expansion coefficients as unknowns of the inverse problem. Generally, the 

overdetermination ratio in evaluating conventional (shaly sand) formations is somewhere 

around 1.5 for local inversion, this can be increased to at least 6 or more depending on the 

length of the processed depth interval and the desired resolution that is controlled by the 

number of series expansion coefficients used. 

Geophysical inverse problems are conventionally solved by linearized (known as 

gradient-based) methods (Menke 1984, Tarantola 2005). These methods have several 
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drawbacks, e.g., the result of the inversion procedure is greatly sensitive to the starting 

model. During the search in the parameter space, the inversion algorithm often gets stuck in 

a local minimum of the objective function near the starting model and a global optimum is 

impossible to be found. However, if adequate a priori information (initial model) is available 

about the investigated structure, these linear optimization techniques can provide optimal 

solutions effectively and fast. To overcome such problems of the linearized inversion 

methods, optimization techniques utilizing random search have been developed in the past 

decades, which was made possible by the great advancement of computer performance. 

Some of the most commonly used global optimization methods in geophysics are simulated 

annealing, the genetic algorithm and the particle swarm optimization (Sen and Stoffa 2013, 

Holland 1975, Pace et al. 2019). These soft computing methods are capable to search through 

a greater extent of the possible solutions than the linearized inversion methods without 

trapping in a local minimum. 

Inversion method development has been in the focus at the Department of 

Geophysics, University of Miskolc for decades. My aim in this thesis is to develop new 

methods for the advanced interpretation of well logs that rely on these previous findings. I 

intend to utilize the advantageous properties of the before mentioned global optimization 

techniques and incorporating them into factor analysis (Szabó 2011) and the so-called 

interval inversion method (Dobróka 1995) to develop new data processing tools for a more 

reliable estimate for petrophysical properties of geological formations. By introducing these 

new data processing methods, I offer new possibilities for the advanced analysis of wireline 

logging data. 

In the first part of my thesis, I improve the mathematical treatment of factor analysis. 

It was previously shown that by factor analysis of well logging data, one can derive some of 

the petrophysical properties of subsurface formations (Szabó and Dobróka 2013, Szabó et 

al. 2012). Instead of the conventionally used maximum likelihood approach for the 

calculation of factor scores (Bartlett 1937), I suggest a method, where the values of factor 

scores are estimated in a globally optimized procedure by decreasing the misfit between the 

measured and calculated data. I test the feasibility of this newly developed method on 

measured well logging data. 

With the help of the developed globally optimized factor analysis, I determine the 

correlation relationship between the first factor log extracted from well logging datasets and 

the decimal logarithm of intrinsic permeability of hydrocarbon-bearing formations. I test the 
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applicability of the suggested regression model on well logs measured in Hungarian 

hydrocarbon exploratory wells. 

To eliminate the starting model dependence of the interval inversion method 

originally developed at the Department of Geophysics, I solve the inverse problem by a 

newly developed metaheuristic approach. Furthermore, for increasing the reliability and 

accuracy of the estimated model parameters, I derive the shale volume by the newly 

developed globally optimized factor analysis and then incorporate it into the interval 

inversion procedure to increase its overdetermination ratio and the accuracy of inversion 

estimation. 

I further develop the suggested globally optimized method of factor analysis (inner 

loop) by the automated selection of some of its control parameters by simulated annealing 

in an outer iteration loop. In this way, I generalize the improved method of factor analysis 

in regard of some if its control parameters, so there is no need to set them empirically in the 

initialization phase based on suggestions from literature. This way they can be selected 

automatically for the given optimization task. 

For further optimizing the results of the developed factor analysis, I suggest an 

improvement in which not just the factor scores are optimized by a global optimization 

technique but the factor loadings as well in the same procedure. This simultaneous 

optimization can reach a better fit between the measured and calculated well logs and thus 

offer a better solution overall. All the new method developments and improvements 

presented in this thesis are tested on measured well logging data and validated by core 

derived petrophysical parameters where available. 
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1. FACTOR ANALYSIS OF WIRELINE LOGGING DATA 

This multivariate statistical tool is used to reduce the number of measured variables 

into a smaller number of uncorrelated parameters, while keeping most of the information 

contained in the original variables to help the data interpretation and to possibly reveal 

hidden information (Lawley and Maxwell 1962). Therefore, in well log applications it can 

be effectively applied because the acquired datasets are usually fairly large due to the 

numerous types of applied logging tools. In wireline logging applications, these new 

variables are called factor logs, which can be related to petrophysical parameters of the 

investigated geological formations through regression analysis (Szabó 2011). Thus giving 

independent estimations to these parameters that can be used to get a more detailed picture 

of the studied formations or to improve the results of further data processing methods. The 

added advantage of the factor analysis based well log processing is that it utilizes several 

type of logs to infer the desired petrophysical parameters, while e.g., simple deterministic 

methods rely only on one type of log to derive a given parameter. As a statistical method, it 

can also process such data, e.g., the caliper log, for which an exact mathematical relation 

with petrophysical properties is not available. 

In this chapter, I suggest a global optimization based solution of factor analysis, in 

which the factor scores are estimated by simulated annealing by decreasing the misfit 

between the measured and calculated data. With the help of existing correlation relationships 

and by regression analysis, I relate the first factor extracted from wireline logging datasets 

to shale volume of different geological formations. By testing the developed method on 

actual well logging data, I show that the method is capable to provide an in situ estimate to 

shale content along arbitrary depth intervals, which may improve the geological model of 

investigated areas. 

For initializing the statistical procedure, first we have to standardize the S number of 

measured well logs and put them into the matrix D, where each column contains the data 

measured by a different logging tool and there is N number of rows representing the 

measured depth points along the borehole  
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(1) 

 

Then D is decomposed as 

 EFLD  T , (2) 

where F denotes the N-by-R matrix of factor scores and R is the number of extracted factors. 

Quantity L is the S-by-R matrix of factor loadings and E denotes the N-by-S matrix of 

approximation errors. Based on Eq. (2), the measured well logs are derived as the linear 

combination of the extracted factors. The factor loadings quantify the correlation 

relationship between the measured data and the computed factors. Most of the data variance 

is represented by the first-factor log, which is the first column of the matrix F. Given that 

the factors are linearly independent, the correlation matrix of the standardized original data 

can be written as 

 ΨLLDDR   TT1N , (3) 

where Ψ  denotes a diagonal matrix of error variances, which are independent of the 

common factors in matrix F normally explaining the largest part of data variance. Then the 

factor loadings can be estimated by a non-iterative estimation method (Jöreskog 2007) 

 UIΓΩΣL
2/12/11 )()(  diag , (4) 

where Γ  is the diagonal matrix of the first R number of sorted eigenvalues of the sample 

covariance matrix Σ, and the first R number of eigenvectors are in matrix Ω  and U denotes 

an arbitrarily chosen R-by-R orthogonal matrix. In traditional approaches, the factor scores 

are calculated by the maximum likelihood method. By assuming the hypothesis of linearity, 

the equation 

   T1T11TT
DΨLLΨLF

 , (5) 

gives an unbiased estimate to the factor scores (Bartlett 1937). Since Eq. (5) is analogous to 

a least squares solution weighted by the specific variances, it usually remains sensitive to 

the level and distribution of instrumental (data) noises and the localities of the objective 

function to be minimized. 
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1.1 Simulated annealing driven factor analysis (FA-SA) 

I alter the traditional method of factor analysis outlined in Chapter 1 by using the 

classical simulated annealing (SA) algorithm (Metropolis et al. 1953) to calculate the factor 

scores. The combined method has been chosen to call as FA-SA (Abordán and Szabó 2018a). 

The workflow of the suggested well-log-analysis method is summarized in Fig. 1. Here, it 

should be noted that for regression analysis the shale volume (Vsh) of the investigated 

formations generally could be determined from other sources as well (e.g., core data, natural 

gamma-ray intensity log) not just the SP-log as in this case. 

 

Fig. 1 The flowchart of the globally optimized factor analysis of well logs 

 

In the first step of this optimization problem, the model of factor analysis defined in 

Eq. (2) is reformulated  

 efLd 
~

, (6) 

where d denotes the SN length vector of measured well logging (standardized) data, L
~

 is 

the NS-by-NR matrix of factor loadings, f is the RN length vector of factor scores and e is 

the SN length vector of errors. Starting the procedure, L
~

 is estimated by Eq. (4) and then 
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rotated with the varimax algorithm (Kaiser 1958) for getting more meaningful factors. Then 

the vector of factor scores f is estimated by the algorithm of SA. To solve the inverse problem 

and estimate the factor scores, an objective function needs to be defined, the minimization 

of which finds the optimal solution. I choose the objective function, named energy function 

in the terminology, based on the L2 norm as 

 
 


NS

i
i

m

i dd
NS

E
1

2(c))( )(
1

, 
 

(7) 

where )(m
d and )(c

d denote the measured and calculated (standardized) well-logging data 

vectors, respectively. In the modified approach of factor analysis, the term of fL
~

 represents 

the calculated data and d denotes the measured data. The former term allows the estimation 

of the theoretical values of well logs, which can be considered as the solution of the forward 

problem. During the iterative procedure, the values of factor loadings are kept fixed to reduce 

the CPU time, and only the factor scores are updated. In each iteration, a randomly generated 

number (b) is added to any of the factor scores in vector f 

 ),…,=( RNjbold

j

new

j 1ff )()(  , (8) 

where parameter b is smaller or equal to the maximal perturbation (bmax) that has to be 

specified in the initialization of the FA-SA algorithm. In the current procedure, I select the 

initial values of factor scores as zero. If the energy difference of factor models - estimated 

in two subsequent iterations (ΔE) according to Eq. (7) - is negative (i.e., better fit between 

the observed and calculated data), the new model is accepted and the process is continued 

with the new energy state. However, in the reverse case (if ΔE>0), the probability of 

acceptance is given by the formula Pa=exp(-ΔE/T), where T is the current temperature of the 

artificial system with no physical meaning. The new factor model is accepted only when a 

randomly generated number from the range of 0 and 1 is smaller than Pa. This acceptance 

rule for new energy states is referred to as the Metropolis criterion (Metropolis et al. 1953). 

This is a fundamental part of the FA-SA algorithm as it prevents the search from being stuck 

in a local minimum of function E in Eq. (7). During the annealing process, the temperature 

of the system is reduced iteratively according to Geman and Geman (1984) to guarantee that 

the global optimum is found 

 )1(log/ 100

)( qTT new  ,   (9) 

where q denotes the number of iterations already computed and T0 is the initial temperature 

of the artificial system. The maximal perturbation term (bmax) is also reduced according to 

bmax=bmaxε, where ε is an arbitrary chosen constant. These steps are repeated in each iteration 
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until the pre-defined maximal number of iteration steps is reached and then the value of 

factor scores in the last iteration step are accepted as the solution. The factors estimated by 

the FA-SA algorithm are directly used to reveal hidden petrophysical information from the 

well-logging datasets as first suggested by Szabó (2011). For this purpose, it is advantageous 

to scale the factor scores 

 
)( min,11

min,1max,1

'

min,1

'

max,1'

min,1

'

1 FF
FF

FF
FF 




 , 

(10) 

where F1 and '

1F are the estimated and scaled value of the first factor in a given depth point,  

F1,max and F1,min are the limits of the first factor log, and '

m ax,1F and 
'

m in,1F  are the new arbitrary 

limits of the first factor log. Szabó and Dobróka (2013) showed that the shale volume (in 

percent) correlates strongly to the first factor log (F1) scaled into the range of 0 and 100, and 

their relationship can be well approximated by  

 1037.0
76.2

F

sh eV  , (11) 

where Vsh is shale volume and the constant added for shifting the function equals zero. I 

verify the validity of Eq. (11) in Alaska costal sediments in the next sub-chapters. Szabó and 

Dobróka (2017) also confirmed the validity of Eq. (11) by a series expansion based interval 

inversion procedure. For such exponential relationship, the strength of correlation between 

the shale volume of the investigated interval and the first scaled factor can be quantified by 

the rank correlation coefficient (Spearman 1904). 

1.1.1 Field test I. - Milky River Formation 

I test the newly developed FA-SA method in two hydrocarbon exploratory wells 

drilled in Alaska, USA (Fig. 2). First, I investigate Well-1 that penetrated the Milky River 

Formation, which is mainly built up of conglomerates, sandstone and mudstone and was 

formed in a shallow marine environment in the Pliocene age (Wiley 1986). It has high 

porosity and high permeability. As the input of factor analysis, I utilized the natural gamma-

ray intensity (GR), bulk density (RHOB), borehole caliper (CAL), deep induction resistivity 

(RILD), spontaneous potential (SP) and neutron-porosity (NPHIS) logs covering a depth 

interval of 266.5 ft with a sampling space of 0.5 ft. At the beginning of the statistical 

procedure, the factor loadings are calculated by Jöreskog’s non-iterative approach using Eq. 

(4). Table 1 contains the resultant factor loadings representing the impact of the different 

well logs on the extracted factors for Well-1. 
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Fig. 2 The location of the investigated wells in the North Aleutian Basin of Alaska, and 

regional distribution of Tertiary-age sedimentary rocks (shaded area) 

 

As Table 1 shows, the deep resistivity and the spontaneous potential logs have the 

highest loads on the first factor and unusually the load of the natural gamma-ray intensity is 

only 0.5213. The first factor log is considered as a lithological indicator that generally 

strongly correlates to the natural gamma-ray intensity log (Szabó 2011) therefore, we would 

expect the natural gamma-ray intensity to have a higher loading, but in this formation, the 

abundance of lithic detritus causes a mineralogical overlap between sandstones and 

mudstones. Therefore, the natural gamma-ray tool which response is mainly due to the 

radioactive mineral content recorded only little or no difference between sandstone and 

mudstone and this causes the relatively low factor loading of the natural gamma-ray intensity 

on the first extracted factor. The second factor log is in strong correlation with the bulk 

density log and in a strong negative correlation with the neutron porosity log, while the third 

extracted factor is mainly influenced by the caliper and natural gamma-ray logs. 

Table 1 Rotated factor loadings estimated in Well-1 – Milky River Formation 

Well logs Factor 1 Factor 2 Factor 3 

CAL 0.3892 0.1484 0.5221 

GR 0.5213 0.0205 0.4602 

SP 0.9538 0.0707 0.0320 

RHOB 0.0883 0.7609 0.0144 

RILD 0.9386 0.0780 0.0134 

NPHIS 0.0969 0.7397 0.0612 
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Once the factor loadings are calculated and fixed, then the factor scores are estimated 

by the SA algorithm. For three factors, the number of unknowns to be estimated is 1,602 (3 

factor × 534 measured depth points). In the step of initialization, I define the objective 

function according to Eq. (7). Based on preliminary runs, I set the initial temperature (T0) to 

10-7, cooling schedule according to Eq. (9), maximal parameter perturbation (bmax) to 0.5, 

perturbation reduction parameter (𝜀) to 0.98 and the maximal number of iteration steps to 

150,000. Figure 3 shows the decrease of the difference between the measured and calculated 

well logs by the iterations steps. 

 

Fig. 3 Development of convergence of the FA-SA procedure for Well-1 

 

The difference between the measured and calculated data reached the minimum at 

about eighty thousand iterations, which took less than 10 seconds on a quad-core based 

workstation. The continuous decrease of the value of the objective function indicates the 

highly stable nature of the FA-SA method. Figure 4 presents the relation between the first 

factor and the shale volume estimated by the FA-SA method utilizing Eq. (11) (where a 

better fit could be reached by refining the regression coefficients). The Spearman’s rank 

correlation coefficient of 0.96 between the first factor and the shale volume indicates a strong 

non-linear relationship between the variables. 
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Fig. 4 Regression relation (red line) between the scaled first factor and the shale volume 

for Well-1. Dots represent the SP log derived shale volumes 

 

 The regression coefficients of the suggested exponential relation agree well with 

earlier studies (Szabó and Dobróka 2013), the same coefficients in several formations show 

consistent results and confirm the applicability of the method at different areas. Shale 

volume derived from the FA-SA method is shown in Fig. 5. On tracks 1-6, the standardized 

(input) well logs (black solid line) and the calculated logs (red dashed line) can be seen. 

Track 7 is the scaled first factor log, while next to it on the right the shale volume calculated 

from the first factor log (red solid line) is compared to that of calculated by deterministic 

modeling using the SP log (purple dashed line). 
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Fig. 5 The results of FA-SA method for Well-1. Measured (black) and calculated well logs 

(red dashed line) in tracks 1-6, scaled first factor log in track 7 and the resultant shale 

volumes in track 8 

 

The fit between the observed and calculated well logs is quite good. A better fit would 

be possible by increasing the number of extracted factors. Theoretical well logs represented 

by red dashed lines were directly calculated as the multiplication of the rotated factor 

loadings and factor scores. The shale volume calculated by the FA-SA method also agrees 

well with the results of the SP-log based deterministic analysis. These results indicate the 

applicability of the FA-SA method for a more detailed shale volume estimation in 

sedimentary formations. 

1.1.2 Field test II. - Bear Lake Formation 

In case of Well-2, the penetrated horizon is the Bear Lake Formation, which is of 

Miocene age, and consists mainly of sandstones, conglomerates and thin mudstones (Finzel 
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et al. 2009). It formed in neritic to tidal flat environments and it can be characterized by high 

porosity and moderate permeability. The inputs of the factor analysis are the borehole caliper 

(CAL), sonic interval transit-time (DT), natural gamma-ray intensity (GR), deep induction 

resistivity (RILD), neutron-porosity (NPHIS), bulk density (RHOB) and spontaneous 

potential (SP) logs. The investigated interval is 130 ft long with a sample spacing of 0.5 ft. 

The FA-SA procedure is initialized by the same control parameters as in case of Well-1. 

Table 2 contains the factor loadings related to three extracted factors in case of Well-2. 

Table 2 Rotated factor loadings calculated in Well-2 – Bear Lake Formation 

Well logs Factor 1 Factor 2 Factor 3 

CAL 0.6222 0.6081 0.1344 

GR 0.6529 0.5218 0.2648 

SP 0.9338 0.0429 0.0081 

RHOB 0.1935 0.5788 0.4545 

RILD 0.8967 0.0588 0.1758 

NPHIS 0.2424 0.8167 0.1616 

DT 0.2733 0.7565 0.0344 

 

In this case, not just the deep resistivity and the spontaneous potential logs have high 

loadings on the first factor, but both the gamma-ray intensity and the caliper logs, too. I also 

implemented the caliper log into the procedure, because washouts and the thickening of the 

mudcake might have strong relation to lithology. As we can see in this example, the caliper 

log affects highly the lithology-sensitive first factor log. The second factor log again 

correlates well with the bulk density and the neutron porosity logs as in case of the Milky 

River Formation along with the acoustic, natural gamma-ray and caliper logs. The third 

factor only correlates moderately with the density log. Figure 6 shows the decrease of the 

value of energy function by the optimization of the 783 unknowns (3 factors × 261 measured 

depth points).  It reached a minimum at about sixty thousand iterations in less than 5 seconds. 

In this case, the FA-SA method again proves to be very stable in the iteration process. 
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Fig. 6 The decrease of model energy by the iteration steps for Well-2 

 

The regression function of the first factor and the shale volume estimated by the FA-

SA method is illustrated in Fig. 7, which refers to a strong relation also for Well-2, although 

a few data are outlying from the model.  

 
Fig. 7 Regression relation (red line) between the first factor and the shale volume for Well-

2. Dots represent the SP log derived shale volumes  

 

The rank correlation coefficient is 0.95 between the extracted factor and that of shale 

volume, which again proves the validity of the exponential relationship defined in Eq. (11). 

The interpretation results of the FA-SA method applied to Well-2 is shown in Fig. 8. The 

first seven columns from the left represents the input well logs (black solid line) and the 

calculated logs (red dashed line), the next is the scaled first factor log (blue solid line), and 
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in the last track the shale volume calculated from the first factor log (red solid line) can be 

compared to the shale volume calculated by deterministic modeling (purple dashed line). 

Here the calculated logs again fit the measured data acceptably well. In conclusion, the shale 

volume calculated by the FA-SA method is consistent with the shale volume calculated by 

deterministic modeling. 

 

Fig. 8 The results of the FA-SA procedure for Well-2. Measured (black) and calculated 

well logs (red dashed line) in tracks 1-7, scaled first factor log in track 8 and the resultant 

shale volumes in track 9 

1.2 Particle swarm optimization based factor analysis (FA-PSO) 

For finding the optimal values of factor scores, I have combined the particle swarm 

optimization (PSO) algorithm with factor analysis (Abordán and Szabó 2018b). It is 

fundamentally different from the algorithm of SA in a sense that it improves a set of solution 

candidates in the iteration process rather than just one solution. Hence a more reliable (and 
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stable) solution is expected with the expense of somewhat higher CPU times. The workflow 

of the FA-PSO well-log-analysis method is summarized in Fig. 9. 

 

Fig. 9 The flowchart of the particle swarm optimization based factor analysis of well logs 

 

 PSO is a metaheuristic technique that is inspired by the social behavior of bird 

flocking and fish schooling. The basic method was originally developed by Kennedy and 

Eberhart (1995). It is widely used for its easier implementation and in some cases higher 

efficiency compared to other metaheuristic optimization approaches such as the genetic 

algorithm (Holland 1975). PSO can be effectively used for non-linear inverse problems with 

large search domains. It utilizes a swarm of particles randomly generated within the search 

space to find the optimal solution. In an n-dimensional search space, the position of the ith 

particle can be written as xi = (xi1,xi2,…,xin)
T and similarly the velocity of the ith particle is 

vi = (vi1,vi2,…,vin)
T, which defines both the direction and distance of movement of the particle 

in each iteration step. The particles, as solution candidates, move around in the search space 

looking for the best solution defined by some objective function according to Eqs. (12)-(13) 

 )1()()1(  ttt iii vxx , (12) 

 ))()(())()(()()1( 2211 ttcrttcrtwt iiiii xgxpvv  , (13) 

where i=1,2,…,L and L is the size of the swarm, iteration steps are denoted by t and 

t=1,…,tmax where the last iteration step is tmax. During the iteration steps the best position of 
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each particle is stored and continuously updated in pi = (pi1,pi2,…,pin)
T  and the very best 

position of the whole swarm is stored in vector g. Control parameters c1 and c2 are set during 

initialization, c1 controls to what extent the personal best position pi affects the movement 

of the ith particle and c2 defines the movement of particles in the direction of the best position 

found by the whole swarm. Here, both c1 and c2 are set to 2 as recommended in the literature 

(Kennedy and Eberhart 1995). In Eq. (13), parameters r1 and r2 are uniformly distributed 

random numbers from the range of 0 and 1. In the same equation, w represents an inertia 

weight that was introduced by Shi and Eberhart (1998) to control the optimization procedure 

more effectively. Figure 10 shows how particle xi(t) gets to its new position xi(t+1) by 

utilizing its own personal best position pi(t), the best position found by the whole swarm g(t) 

and its velocity vi(t). 

 

Fig. 10 Illustration of the searching mechanism of the PSO algorithm 

 

The algorithm of PSO is utilized to find the optimal value of factor scores in a similar 

manner as SA in the previous subchapter. In the first step of finding the optimal values of 

the factor scores f, a random population of 90 particles with uniform distribution is generated 

within the search space, which can be defined by solving Eq. (5) for the factor scores. In this 

case, the boundaries of factor scores are found between -6 and 6. In Eq. (13) both c1 and c2 

are set as 2 in the whole iteration process. The inertia weight w is set in each iteration step 

according to Feng et al. (2007). They suggested the use of chaotic descending inertia weight, 

which is calculated in 3 steps: first a random number z is generated in the range between 0 

to 1. Then by logistic mapping, z is set according to z=4z(1–z) and finally 

 zwqqqwww 2maxmax21 /))((  , (14) 

where w1 and w2 are the initial and the final value of inertia weight respectively (w1=0.3 and 

w2=0.08), qmax and q are the maximal number of iteration steps and current iteration step 

respectively, in this case qmax =3,000. Then in each iteration step, the positions of the 
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particles are updated according to Eqs. (12)–(13), and the previously defined objective 

function in Eq. (7) is recalculated with the new values of factors f. The particles are updated 

in each iteration step until a pre-defined number of iteration steps is reached and then the 

final values of the factor scores are accepted as the solution. The factor scores calculated by 

the newly developed FA-PSO algorithm can also be directly used to reveal hidden 

petrophysical information from the wireline logging data set. It was previously shown that 

for shorter intervals (max. 100–150 m), shale volume Vsh (given in percent) often correlates 

linearly to the first factor log (F1) scaled into the range of 0 and 100 (Szabó and Dobróka 

2011, Szabó 2011) as  

 baFVsh  1 , (15) 

where a is the slope of the regression line and b is the intercept. 

1.2.1 Field test – Baktalórántháza 

The FA-PSO method is tested in a thermal water well (Well-A) in Baktalórántháza, 

north-east Hungary (Fig. 11). The well is 1,197 m deep and in the upper portion of it upper 

Pleistocene aquifers with varying grain sizes can be found. The mainly horizontal porous 

layers are bordered by shales. In the range of 100 to 160 m, mostly sandy layers are located, 

below it 10 to 15 m thick coarse-grained beds were deposited. The investigated interval is 

93.1 m long, from 100 m to 193.1 m. As the input of factor analysis, the natural gamma-ray 

intensity (GR), gamma-gamma intensity (GG), shallow resistivity (RS), spontaneous 

potential (SP) and neutron-neutron intensity (NN) logs are utilized. 

 

Fig. 11 Location of the water-producing well used for testing the FA-PSO procedure 
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First, the factor loadings are calculated by Jöreskog’s non-iterative approach for three 

factors using Eq. (4). Table 3 contains the resultant factor loadings representing the 

correlation between the different well logs and the extracted factors. By calculating three 

factors for this 93.1 m long section, which has 932 measured depth points, the vector of 

factors f is composed of 2,796 scores. This means that the algorithm of PSO has to find the 

global optimum by finding the optimal values of 2,796 variables along the borehole. 

Table 3 Rotated factor loadings estimated by the FA-PSO method in Well-A 

Well logs Factor 1 Factor 2 Factor 3 

GR 0.7515 −0.1836 0.0127 

SP −0.0380 −0.7396 −0.0893 

NN 0.0580 −0.1184 −0.5976 

GG −0.5930 −0.0948 0.3062 

RS −0.4955 0.6537 −0.0081 

 

As Table 3 indicates, the natural gamma-ray log has the highest loading and both the 

shallow resistivity and gamma-gamma logs have moderate loadings on the first factor and 

the loadings of the spontaneous potential and neutron-neutron logs are negligible. However, 

it should be noted that here gamma-gamma intensity and neutron-neutron intensity logs are 

processed, which would require further calibration to represent bulk density and neutron-

porosity and that could change their loadings on the extracted factors. It can be concluded 

that the first factor is mainly influenced by lithological properties of groundwater formations. 

While the second factor log correlates with the spontaneous potential and shallow resistivity 

logs. The third factor only correlates negatively with the neutron-neutron log. 

In the next step, the factor scores are estimated by the particle swarm optimization 

algorithm as detailed above. Figure 12 shows the continuous decrease of the objective 

function values that is defined in Eq. (7). It reaches a minimum at about fifteen hundred 

iterations, which took approximately thirty seconds on a quad-core workstation. The steady 

decrease of the objective function indicates that the method is highly stable.  
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Fig. 12 Development of convergence of the FA-PSO procedure in Well-A 

 

Figure 13 presents the linear regression relation between the scaled first factor and 

the shale volume of the investigated groundwater formation based on Eq. (15). In the given 

example, I have found the regression coefficients with 95% confidence bounds to be a=0.611 

[amin=0.5863, amax=0.6353] and b=-1.299 [bmin= -2.435, bmax= -0.1632]. 

 

Fig. 13 Regression relation (red line) between the first factor and shale volume in Well-A. 

Dots represent the shale volumes derived by GR log based deterministic modeling 

 

The Pearson’s correlation coefficient for the first factor and the shale volume of the 

investigated interval is 0.86, which indicates a strong linear relationship and verifies the 

applicability of Eq. (15) in the well. The observed well logs and those calculated by the 

newly developed FA-PSO method are shown in Fig. 14. On tracks 1 to 5, the standardized 
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(input) well logs (black solid line) and the calculated logs (red dashed line) can be seen. 

Track 6 represents the extracted first (scaled) factor log (blue).  

 

Fig. 14 The results of the FA-PSO procedure in Well-A. The measured (black) and 

calculated well logs (red dashed line) in track 1-5, the scaled first factor in track 6 and the 

resultant shale volumes in track 7 

 

The fit between the measured and calculated data is quite good. The theoretical well 

logs drawn by red dashed lines are directly calculated as the multiplication of the rotated 

factor loadings and factor scores from Eq. (6). The result of traditional factor analysis was 

earlier confirmed by core laboratory measurements in the same well (Szabó et al. 2014). On 

track 7, the shale volume calculated from the PSO-derived first factor log (solid red line) is 

compared to core data (dots) and to that calculated by deterministic modeling suggested by 

Larionov (1969) using the GR log (purple dashed line), where first the gamma ray index is 

calculated as 
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
 , 

(16) 

where GR is the gamma-ray reading of the formation, GRMIN is the gamma ray reading in 

clean sand and GRMAX is the reading in shale. Then shale volume is calculated as 

 )12(083,0
7,3

 GRI

shV . (17) 

It can be seen that the shale volume calculated by the developed statistical method also 

agrees well with the results of deterministic analysis and core data. These results confirm the 

applicability of the FA-PSO method for shale volume estimation in water bearing 

formations.  

1.3 Summary 

The globally optimized solution for the factor scores was first suggested by Szabó 

(2016) with the computationally expensive genetic algorithm. For finding the optimal 

solution in a faster procedure, I have developed the simulated annealing based factor analysis 

(FA-SA) and an efficient population-based solution by particle swarm optimization (FA-

PSO), both of which is shown to work effectively. Furthermore, another population based 

optimization method, the so-called invasive weed optimization (Mehrabian and Lucas 2006) 

was earlier shown to effectively solve the problem of factor analysis (Abordán 2018). Here, 

it should be noted that by implementing the very fast simulated annealing (VFSA) algorithm 

(Ingber 1989) into FA-SA, the CPU time of the developed method could be further reduced. 

With a global optimization approach, the measured well logs are transformed into 

factor logs in a reliable way. One finds that the first factor log calculated by the suggested 

methods strongly correlate with the independently calculated shale volume of the 

investigated formations. However, it should be noted, that as it is a general method, it can 

be used to evaluate more types of lithologies than shown in my thesis. The implementation 

of the suggested metaheuristic methods allows also for the estimation of the theoretical 

values of well logs, which neglects the preliminary knowledge of zone parameters and other 

petrophysical information. Both of the applied metaheuristic proves to be very stable in the 

iteration process and delivers the results within a minute for sections of around a hundred 

meters. Therefore, the newly developed FA-SA and FA-PSO statistical methods can provide 

a reliable (independent well-log-analysis based) estimate to shale volume in practice. Once 

a regression relationship is found between the first factor extracted from a well logging 
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dataset and the shale volume of a given formation in a specific area, the relationship might 

be used in neighboring wells as well. This might reduce the operating costs, such as the need 

for taking more core samples to determine shale volume. 

 

Thesis 1. 

I have developed global optimization based solutions of factor analysis that are 

capable to estimate the factor scores by means of simulated annealing and particle swarm 

optimization, separately. Factor analysis is solved as an inverse problem, the optimal values 

of factor scores are estimated by finding the best fit between the measured and calculated 

data. By the above manner, I have developed the FA-SA and FA-PSO algorithms. The two 

developed methods are both capable to derive the factor scores from wireline logging 

datasets in a reliable way, while factor loadings are fixed during the procedure. By 

processing in situ datasets, I proved the feasibility of the suggested methods in different 

measurement sites, and estimated the shale volume directly from the global optimization-

derived factor logs. 
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2. ESTIMATING PERMEABILITY FROM THE FACTOR SCORES 

DERIVED BY FA-PSO  

Petrophysical parameters are usually estimated in formation evaluation from several 

different sources for a better reservoir modeling. As a new alternative, I utilize well logging 

data and derive the permeability of different hydrocarbon formations directly from the factor 

scores estimated by the improved particle swarm optimization assisted factor analysis (FA-

PSO). The flowchart of the suggested well-log-analysis method is shown in Fig 15. 

 

Fig. 15 The flowchart of the FA-PSO based permeability estimation 

 

 As it was shown, the first extracted factor correlates well with the shale volume of 

different formations. In this chapter, a strong correlation is shown between the decimal 

logarithm of permeability and the first factor log, which is partly due to the fact that 

permeability is to some extent inversely proportional to shale volume in clastic formations 

(Schön and Georgi 2003, Revil and Cathles 1999). The method is tested in Hungarian 

hydrocarbon wells. For estimating permeability (K) from wireline logging dataset, usually 

deterministic approaches are used in practice which rely on porosity (Φ) and irreducible 

water saturation (Sw,irr) data. The most frequently applied method uses the formula of Timur 

(1968) 
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The suggested statistical method is tested in two wells drilled in the Pannonian basin 

in Hungary. It is shown that the first factor log derived by the developed FA-PSO method 

scaled into the range 0 to 1 can be directly used to estimate permeability along the 

investigated intervals. In my study, the non-linear relationship between the first factor log 

extracted from the wireline logging dataset and decimal logarithm of permeability is found 

at different Hungarian oilfield wells in the form of 

 cFaK b  )1()lg( 1 . (19) 

I seek the regression coefficients a, b and c by regression analysis. For Well-I, the 

relationship is found by utilizing the permeability data deterministically estimated by the 

EXPRESS-CLASS system used by MOL Plc. (Baker Atlas 1996). For Well-II the available 

permeability data measured on core samples is used for determining the regression 

relationship between the first extracted factor and the decimal logarithm of permeability 

along the investigated formation. 

2.1 Hungarian field test I. 

The applicability of the improved method of factor analysis is first tested in a 

hydrocarbon well (Well-I) drilled in the Pannonian basin, Hungary. The processed well logs 

by the FA-PSO method include the borehole caliper (CAL), natural gamma-ray intensity 

(GR), neutron-porosity (NPHIS), bulk density (DEN), deep resistivity (RD), potassium-

thorium product (KTH), acoustic interval time (DT) and spontaneous potential (SP) logs. 

The processed interval is 290 m long and the sampling interval is 0.2 m. At the start of the 

procedure, the input well logs are standardized and collected into the column vector d 

according to Eq. (6). Then the factor loadings are estimated for three factors by the non-

iterative approximate method of Jöreskog (2007) based on Eq. (4). The resultant rotated 

loadings are collected in Table 4. 
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Table 4 Rotated factor loadings estimated in Well-I 

Well logs Factor 1 Factor 2 Factor 3 

CAL 0.2708 −0.1205 0.2009 

NPHIS 0.3806 −0.6440 −0.3984 

DT 0.1183 −0.8691 −0.0374 

GR 0.8671 −0.4167 −0.0653 

KTH 0.7252 −0.2522 0.0295 

RD −0.1203 0.3440 0.5603 

SP 0.4543 −0.2669 0.1949 

DEN 0.9412 0.0402 −0.0639 

 

The first factor is strongly related to the natural gamma-ray, potassium-thorium index 

and bulk density logs that make it a good lithological indicator, which is consistent with my 

previous applications (Table 1, 2, 3). The second factor log correlates with the acoustic and 

neutron-porosity logs, while the third factor is mainly influenced by the deep resistivity log. 

Once the loadings are determined, the factor scores can be optimized by the algorithm of 

PSO as detailed in Chapter 1.2. First, an initial solution is given by solving Eq. (5) for the 

factor scores, thus the search space of the PSO process is defined as [-12 to 12]. Since three 

factors were calculated, the number of unknowns is 4,353 (3 factor × 1451 depth points). 

For estimating their optimal values, 90 particles are initialized within the pre-defined search 

space. They search for the solution by moving around in the search domain according to Eq. 

(12) and (13) to minimize the objective function in 5,000 iteration steps earlier defined in 

Eq. (7). The other control parameters (c1, c2, w) of the algorithm are unchanged from the 

ones used in Chapter 1.2. At the end of the optimization phase, the data distance reached 

0.53 (Fig. 16) within a hundred seconds. 

 

Fig. 16 Convergence of the FA-PSO procedure in Well-I 
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To find the regression relationship between the first factor log found by the 

developed FA-PSO method and the decimal logarithm of permeability, first it needs to be 

scaled in the range of 0 to 1 using Eq. (10). For regression analysis, the deterministically 

(Timur equation) derived permeability data is used. 

 

Fig. 17 Regression relation between the scaled first factor and the decimal logarithm of 

permeability for Well-I 

 

In this example, the regression coefficients for Eq. (19) with 95% confidence bounds 

are found to be a=5.939 [amin=5.807, amax=6.071], b=1.267 [bmin= 1.182, bmax= 1.352] and 

c=2.321 [cmin=2.241, cmax=2.402]. The correlation relation between the scaled first factor and 

the decimal logarithm of permeability is plotted in Fig. 17. The rank correlation coefficient 

of -0.77 between the first factor and the decimal logarithm of permeability indicates a strong 

inverse non-linear relationship.  

The input well logs of the procedure are plotted in Fig. 18 in the first 8 tracks, and as 

the last track indicates the fit between the FA-PSO method derived permeability and that 

derived by the Baker Atlas CLASS-EXPRESS software routinely used by MOL Plc. is fairly 

consistent along the investigated interval. 
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Fig. 18 The input logs of FA-PSO (track 1-8), the scaled first factor log (track 9), the 

derived permeability log and the CLASS-EXPRESS derived permeability logs (track 10) 

2.2 Hungarian field test II. 

 I test the applicability of the FA-PSO based permeability estimation method using 

core plug data as well. Here the processed well logs are from another Hungarian hydrocarbon 

well (Well-II) drilled in the Pannonian basin, Hungary, which include the natural gamma-

ray intensity (GR), neutron-porosity (NPHIS), bulk density (DEN), deep resistivity (RD), 

potassium-thorium product (KTH), acoustic interval time (DT) and spontaneous potential 

(SP) logs. From core plugs, the equivalent liquid permeability (KL) is available, which is 

derived from the measured gas permeability (KG) as 

 

)/(1 m

G
L

Pb

K
K


 , 

(20) 

where b is a constant for a particular gas in a given rock type and Pm is the mean pressure 

(Klinkenberg 1941). Here, it should be noted that the laboratory measurements on core plugs 
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and wireline logging are carried out under two very different conditions. The temperature 

and pressure of the environment and the water saturation of rock all might be different. Core 

plugs can provide only local information about permeability, while logging data is 

influenced by a larger extent of the rock formation, therefore the misfit between the FA-PSO 

derived permeability and that of core data can be significant. The reliability of the method 

also relies on the accuracy of the documented core plug locations. To improve the correlation 

coefficient for relationship (19), I tend to concentrate the observed information into one 

factor. I carried out the regression analysis for finding the relationship between the first 

factor and the decimal logarithm of permeability on the locations from where the core plugs 

were taken. In the investigated interval, core data is available at 54 locations, therefore 

logging data is collected from these locations and standardized to serve as the input of factor 

analysis. The processed interval is 18 m long. Here again, factor loadings are estimated by 

Eq. (4) only for one factor. The calculated and rotated loadings are shown in Table 5. 

Table 5 Rotated factor loadings estimated in Well-II 

Well logs Factor 1 

NPHIS −0.0178 

DT 0.8697 

GR 0.8734 

KTH 0.9825 

RD 0.9595 

SP −0.3745 

DEN 0.3058 

 

The extracted factor from the wireline logging dataset shows a strong correlation 

with the acoustic, natural gamma-ray, potassium-thorium and deep resistivity logs. After the 

loadings are calculated, the factor scores are optimized by the algorithm of PSO in the same 

manner as detailed for Well-I. First, an initial solution is given by solving Eq. (5) for the 

factor scores, which defines the search space of the FA-PSO method as [-3 to 3]. Since only 

one factor is calculated, the number of unknowns adds up to only 54 (1 factor × 53 depth 

points). For estimating their optimal values, 45 particles are initialized in the pre-defined 

search space. They search for the solution by moving around in the search domain according 

to Eq. (12) and (13) to minimize the objective function in 200 iteration steps earlier defined 

in Eq. (7). The other control parameters (c1, c2, w) of the algorithm are unchanged from the 

ones used in Chapter 1.2. At the end of the optimization, the data distance reached 0.66 (Fig. 

19) in less than a second. 
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Fig. 19 Convergence of the FA-PSO procedure in Well-II 

 

For establishing the regression relationship between the first factor and the decimal 

logarithm of permeability, first it needs to be scaled into the range of 0 to 1 according to Eq. 

(10). For regression analysis, the equivalent liquid permeability data is used. In this example, 

the regression coefficients for Eq. (19) with 95% confidence bounds are found to be a=2.818 

[amin=2.364, amax=3.271], b=2.696 [bmin= 1.804, bmax= 3.588] and c=0.1259 [cmin=-0.331, 

cmax=0.583]. The non-linear relationship between the first scaled factor log and the decimal 

logarithm of permeability is plotted in Fig. 20. 

 

Fig. 20 Regression relation between the scaled first factor and the decimal logarithm of 

permeability measured on core plugs in Well-II 
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The rank correlation coefficient of -0.78 between the first scaled factor and the 

decimal logarithm of permeability indicates a strong negative non-linear relationship. As it 

was expected, the fit between the permeability derived from well log data by the improved 

method of factor analysis and that from core plugs is only moderate, however the trend and 

changes in permeability in the investigated interval is well followed by the FA-PSO based 

permeability estimation (Fig. 21). The input well logs of factor analysis are plotted in the 

first 7 tracks, the scaled first factor log is in track 8, and the last track contains the decimal 

logarithm of permeability derived by the developed FA-PSO method using Eq. (19) and the 

core plug data.  

  

Fig. 21 The input logs of FA-PSO (track 1-7), the scaled first factor log (track 8), the 

derived permeability log and the permeability derived from core plugs (track 9) in Well-II 

2.3 Summary 

In this section, I proved that there is a strong non-linear relationship between the first 

factor log derived from well logging data by the newly developed FA-PSO method and the 

decimal logarithm of permeability of the studied hydrocarbon formations. The permeability 

estimations are compared with both deterministic and core derived permeability data and 

DOI: 10.14750/ME.2020.007



 
33 

 

they show a good correlation. Thus the developed method might serve as an independent 

source of permeability in oil field applications. 

 

Thesis 2. 

I have established a regression model between the first factor log estimated by the 

particle swarm optimization based factor analysis (FA-PSO) and the permeability of 

hydrocarbon-bearing formations. This allows the estimation of permeability from an 

independent well-log-analysis method, which is based on the comprehensive interpretation 

of all available wireline logs. The developed method has been tested on Hungarian 

hydrocarbon bearing formations using in situ data. The factor analysis derived permeability 

is compared and successfully verified by deterministic modeling and laboratory based 

measurements. 
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3. UNCERTAINTY REDUCTION OF INTERVAL INVERSION 

ESTIMATION RESULTS USING A FACTOR ANALYSIS 

APPROACH 

Inversion methods are widely used in applied geophysics (Oldenburg and Li 2005). 

The increase of accuracy and reliability of inversion estimation is in focus of scientific 

researches, which has a great practical impact on geophysical data processing especially in 

well logging applications. In this chapter, I aim to investigate the impact of the 

overdetermination (data-to-unknowns) ratio on the global inversion of wireline logging data. 

In the course of the so-called interval inversion method (Dobróka and Szabó 2001), 

geophysical data measured in a borehole over a longer depth range is jointly inverted and 

the depth variation of the investigated petrophysical parameters are expanded into series 

using Legendre polynomials as basis functions resulting in a highly overdetermined inverse 

problem. I apply a metaheuristic particle swarm optimization approach as a first phase of 

inversion for eliminating the starting model dependence of the interval inversion procedure. 

In the subsequent linear inversion steps, by using the measurement error of logging tools and 

the covariance matrix of the estimated petrophysical parameters, the accuracy of the model 

parameters is quantified.  

A further increase of the overdetermination ratio of the interval inversion method can 

be made by properly decreasing the number of unknowns. Some parameters are available 

from independent (reliable) sources which may be integrated into the joint inversion 

problem. By the improvement of the overdetermination ratio, one can reduce the estimation 

errors and maintain the vertical resolution of the estimated model parameters. For this 

purpose, I leave the number of series expansion coefficients unchanged, however, I estimate 

the shale volume of the investigated formation prior to inversion by the developed FA-PSO 

method (Fig. 22). Then I incorporate the resultant shale volume log into the interval 

inversion procedure as a known parameter, thus the number of known data is increased and 

the number of petrophysical parameters to be discretized by series expansion is decreased 

from 4 to 3 (Abordán and Szabó 2020). This procedure significantly increases the 

overdetermination ratio of the interval inversion method and thus decreases the uncertainty 

of the remaining model parameters allowing for a more reliable calculation of hydrocarbon 

content.  

A similar approach was developed for direct push logging data (Szabó et al. 2018), 

where factor analysis is used to derive the water content of the investigated shallow 
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subsurface formations to reduce the number of unknowns of the inversion procedure 

afterwards (Abordán and Szabó 2019a). 

 

Fig. 22 The flowchart of the PSO based interval inversion procedure aided by the FA-PSO 

method 

3.1 Local inversion of wireline logging data 

In the course of local inversion, petrophysical parameters are estimated in each 

measured depth point separately by inverting the measured well logging data recorded at the 

same depth. The wireline logging dataset used in this section was recorded in a hydrocarbon 

exploratory well drilled in the Pannonian Basin in Hungary (Well-H). The processed interval 

is 19.2 m long and is built up of gas-bearing unconsolidated shaly sand layers of Pliocene 

age. In the inversion procedure the natural gamma-ray intensity (GR), true resistivity (Rt), 

neutron porosity ( NΦ ), acoustic interval time ( tΔ ), potassium concentration (K) and bulk 

density ( bρ ) logs are processed to estimate porosity (Φ or POR), shale volume (Vsh), water 

saturation in the flushed zone (Sx0) and water saturation in the virgin zone (Sw). Using the 

material balance equation 1 sdsh VVΦ , sand volume can be calculated without 

increasing the number of unknowns. I use only the potassium concentration log from spectral 

gamma-ray measurements, because of the type of the clay minerals present in the studied 

formation. Logging was done with a sampling rate of 0.1 m, thus the inverted dataset 
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including 6 types of wireline logs contains 1158 data points. The response equations used to 

relate the measured data to the model parameters are as follows (Wyllie et al. 1956, Alberty 

and Hashmy 1984, Schlumberger 1989, Baker Atlas 1996, Szabó and Dobróka 2019) 
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where the model parameters are porosity (Φ ), shale volume (Vsh), sand volume (Vsd), water 

saturation in the invaded zone (Sx0) and water saturation in the virgin zone (Sw). All other 

parameters in the response equations are taken as constants during the inversion procedure, 

including the physical properties of the mud filtrate (mf), shale (sh), sand (sd) and 

hydrocarbon (hc), the textural parameters, cementation exponent (m), saturation exponent 

(n) and tortuosity factor (a). As well as the mud filtrate coefficients ( 0α ,Ccor), the compaction 

factor (cp) and the residual hydrocarbon coefficient (Shrf). 

Then both the measured(m) and calculated(c) well logs are collected into column 

vectors 
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where superscript T means transpose operator. Model parameters are estimated by 

minimizing the deviation between the vectors defined in Eqs. (27)-(28). This is 

conventionally solved by some linearized method (Menke 1984). Here, I utilize the 

metaheuristic method of PSO to develop a new variant of the local and interval inversion 

method, respectively. We minimize the root mean squared error between the (normalized) 

observed and calculated data as follows 
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where S is the number of applied logging tools.  
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Fig. 23 Results of the PSO-based local inversion of well logging data in Well-H, the 

measured (black) and calculated (red dashed line) in the first 6 track, the estimated 

petrophysical parameters (blue) in the last 4 tracks 

 

This metaheuristic PSO method is more and more frequently used to solve complex 

geophysical inverse problems (Shaw and Srivastava 2007). In the local inversion procedure, 

each particle of the swarm represents a solution for the model parameters and the particle 

with the best cost after the last iteration step is accepted as solution. For the local inversion 

(Fig. 23), PSO was run one by one for the 193 measured depth points by utilizing 30 

particles. The other control parameters (c1, c2, w) of the PSO algorithm are unchanged from 

the ones used in Chapter 1.2. In each depth point the four unknowns were derived from the 

six available logs and the response equations defined in Eqs. (21-26). The mean of the data 

distance defined in Eq. (29) for all the 193 depth points decreased to 3.93% by running the 

PSO-based inversion for 100 iteration steps in each depth point separately, overall it took 

twenty seconds. However, it should be noted that local inversion of wireline logging data 

has its drawbacks due to its high noise sensitivity, e.g., in this example Sx0 considerably 

deviates from 1 in the shale layer at the top of the investigated interval (0-4 m). 

3.2 Interval inversion of wireline logging data 

In the course of interval inversion, the petrophysical parameters are assumed to be 

the functions of depth, which are estimated for a longer interval in one inversion procedure 
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using all data recorded in that interval. Therefore, the local probe response functions are 

modified to be depth-dependent 

 ))(),...,(),...,(()( 1

)( zmzmzmgz Mis

c

s d , (30) 

where gs denotes the response function of the sth logging tool (s=1,2,…,S, where S is the 

number of logging instruments) and mi is the ith petrophysical property (there is M number 

of petrophysical parameters). The model parameters in Eq. (30) are discretized by series 

expansion after Dobróka et al. (2016) 
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where Bq is the qth series expansion coefficient and the lth degree Legendre polynomial can 

be written using 
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the value of the ith model parameter along the inverted interval is described by Q(i) number 

of series expansion coefficients. The coordinates of the well logging measurements are 

scaled in the interval -1 to 1 where the Legendre polynomials form an orthogonal set of 

functions. The main advantage of the described series expansion-based inversion is that the 

required number of expansion coefficients to describe the model parameters is reasonably 

smaller than the number of inverted data, which leads to appropriately overdetermined 

inversion procedure. The optimal values of the expansion coefficients are found by the 

minimization of the relative data distance of measured and calculated data as in Eq. (33). 

Calculated data is obtained by using Eqs. (30)-(31) and the data distance modifies to 
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(33) 

where N denotes the number of measured depth points along the processed interval and S is 

the number of applied logging tools. Equation (33) serves as the objective function to be 

minimized. In the optimization problem, the normalized overall deviation between the 

measured and calculated data is reduced by the iterative algorithm of the Damped Least 

Squares (DLSQ) method (Marquardt 1959). When input data accuracies are not known, 

weights can be calculated automatically (Drahos et al. 2011) which could be adopted for 

interval inversion as well. To overcome the starting model dependence of the inversion 

procedure, the optimal values of expansion coefficients describing the petrophysical 

parameters are first approximated by PSO, once the solution is adequately close to the 
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optimum, the inversion procedure is switched to a linearized optimization phase, where the 

final values of expansion coefficients are found by the DLSQ method and then are 

substituted into Eq. (31) to calculate the model parameters for the whole inverted interval. 

This greatly reduces the runtime of the procedure and allows for the calculation of estimation 

errors, since the covariance matrix of the model parameters estimated by the DLSQ method 

relates to the data covariance matrix that also includes the variances of measured data 

(Menke 1984). For the series expansion coefficients, the covariance matrix is 

 T(m)g )(covcov g GdGB , (34) 

where d(m) is the vector of measured data and G-g is the generalized inverse of the problem. 

To calculate the uncertainty of estimated petrophysical parameters, the depth-dependent 

model covariance matrix of the model parameters needs to be introduced (Dobróka et al. 

2016)  
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where B is the vector of series expansion coefficients, indices are (i=1,2,…,M; j=1,2,…,M; 

h=n+Q1+Q2+,…,+Qi-1; h’=m+Q1+Q2+,…,+Qj-1). Using Eq. (17) one can derive the 

estimation error of model parameters as 

    
1 2

m
/

i iim ( z ) cov ( z )  . (36) 

3.3 Field test of interval inversion using Hungarian oilfield data 

Interval inversion is performed on the same dataset and petrophysical model used for 

local inversion in Chapter 3.1. The workflow of the inversion procedure presented in this 

subchapter can be seen in Fig. 22, neglecting the steps bordered by the dashed line. By 

discretizing the 4 model parameters according to Eq. (31) with Legendre polynomials of 

degree 44, the number of unknowns is 180, because the required number of series expansion 

coefficients for each petrophysical parameter is the maximum degree of Legendre 

polynomials plus one. Thus, the data-to-unknowns ratio is (1158 data points / 180) 6.4. The 

values of expansion coefficients are initialized by minimizing Eq. (33) with the algorithm of 

PSO. At the start of the inversion procedure, 45 particles are initialized by PSO, each 

representing a possible solution for the 180 expansion coefficients describing the 

petrophysical parameters. The only constraint is that the zeroth Legendre polynomials are 

initialized from their possible physical ranges of  

10,10,10,4.00 0

0000  xwsh SSVΦ BBBB , however these values cover the full 
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possible range of estimated petrophysical parameters. All the rest expansion coefficients are 

randomly generated from the range of -0.2 and 0.2. Thus, the initialized set of particles have 

an average data distance of 2.72107%, a standard deviation of data distance of 1.61108% 

and the maximum data distance of all particles is 1.08109%. Then the set of particles move 

in the search space according to Eqs. (12)-(13) to find the optimal solution where the squared 

data distance between the measured and calculated data is minimal. PSO is run for 100 

iteration steps where it reaches a data distance of 23.51%, then the inversion procedure is 

followed with a linearized phase using the DLSQ method for 15 more steps, the final data 

distance is 4.87% (Fig. 24). The whole iteration process takes 30 seconds on a quad core 

workstation. 

 
Fig. 24 Convergence of data distance to the optimum having 4 unknown petrophysical 

properties 

 

For checking the quality of the inversion estimates, first, measured data standard deviations 

are assumed to be 07.0,05.0,06.0,06.0,09.0,08.0   KtRΦGR btN
 

. 

Then by Eq. (36), we can calculate the estimation error of the resultant petrophysical 

parameters by using the uncertainties of the observed parameters (Fig. 25). 
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Fig. 25 The measured well logs in the first 6 tracks with their assumed uncertainties 

(shaded area) and the resultant petrophysical parameters and their estimation errors 

(shaded area) in the last 4 track in Well-H 

 

The average estimation error of the resultant petrophysical parameters are 

vvVvvSvvSvvΦ shxw /024.0,/245.0,/112.0,/026.0 0  . The estimation accuracy is 

considerably smaller for water saturation than for porosity or shale volume, respectively, 

because it shows the strongest correlation with the other model parameters. 

3.3.1 FA-PSO derived shale volume 

To assess how the increase of the overdetermination ratio affects the suggested PSO-

based interval inversion method, first, I derive one of the petrophysical parameters from a 

different source and then incorporate it into the inversion procedure. For this purpose, I 

choose the newly developed method of factor analysis (FA-PSO) to estimate shale volume 

of the investigated formation. First, well logging data including the natural gamma-ray 

intensity, neutron porosity, true resistivity, potassium concentration and bulk density logs of 

the investigated interval is standardized and put into the data vector d defined in Eq. (6). 

Factor loadings representing the correlation relationship between the extracted factor and 

measured logs are calculated according to Eq. (4). I extract only one factor from the dataset, 

the calculated factor loadings after rotation by the varimax algorithm are L(GR)=0.99, 

L(ΦN)=0.96, L(Rt)=−0.88, L(ρb)=0.98 and L(K)=0.94, which are fixed for the next phase of the 

procedure to save CPU time. Then the developed FA-PSO method finds the optimal values 
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of the factor scores by minimizing Eq. (7) utilizing 90 particles as solution candidates in 

1000 iteration steps in 20 seconds on a quad core workstation (Fig. 26a). Based on the 

calculated loadings, all logs included in factor analysis correlate well with the first extracted 

factor. First, the factor log needs to be scale it into the range of 0 to 1 according to Eq. (10) 

so that it is comparable to shale volume. Then by regression analysis, the relation can be 

found between the extracted factor and shale volume of the investigated formation (Fig. 

26b). In this study, I choose the local inversion derived shale volume for regression analysis 

that is detailed in Chapter 3.1. Other options would be a deterministic approach based on the 

natural gamma-ray intensity log (Larionov 1969) or core analysis. The relationship between 

the first factor and shale volume typically takes the general form (Szabó 2011) 

 caeV
bF

sh  1 , (37) 

where the regression coefficients in this case with 95% confidence bounds are found to be 

a=0.197 [amin=0.1598, amax=0.2344], b=1.434 [bmin= 1.291, bmax= 1.577] and c=-0.139 [cmin= 

-0.1826, cmax= -0.0949] (Fig. 26b). 

 
Fig. 26 The convergence of the PSO-based factor analysis procedure on the left, the 

relation of the first extracted factor and shale volume on the right: exponential regression 

model (red line) and shale volume estimated by local inversion (dots) in Well-H 

 

The rank correlation coefficient of 0.99 practically indicates entire correlation and 

non-linear relationship between the scaled first factor and shale volume. 

3.3.2 Interval inversion improved by factor analysis 

Interval inversion is run again with the same parameters and constraints as detailed 

in Chapter 3.2. However, shale volume is now considered as a known parameter along the 
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inverted interval derived by the suggested FA-PSO method as it is shown in Fig. 22. Thus 

the number of inverted data is increased to 1351 (7193) and the number of unknowns is 

decreased to 135 because only 3 model parameters need to be discretized this time by series 

expansion using Legendre polynomials of degree 44. This results in an overdetermination 

ratio of 10, which is a 56.3% increase compared to the case detailed in Chapter 3.2 where 4 

model parameters were estimated by interval inversion. The convergence of data distance to 

the optimum both in the global and linearized phases of the inversion procedure is quite 

steady (Fig. 27) 

 
Fig. 27 Convergence of data distance for the hybrid interval inversion procedure 

 

After 100 iteration steps, PSO reaches a data distance of 14.69% by minimizing Eq. 

(33). Then the DLSQ method further decreases data distance to 5.22% in 15 iteration steps. 

Including the runtime of factor analysis, this takes 40 seconds on a quad core workstation. 

Due to the increased data-to-unknowns ratio, the estimation error of the resultant 

petrophysical parameters is decreased (Fig. 28), the shale volume derived by the FA-PSO 

method based on Eq. (37) can be seen in the last track. The average estimation errors of the 

resultant petrophysical parameters calculated by Eq. (36) are decreased to 

vvSvvSvvΦ xw /170.0,/074.0,/024.0 0   (Fig. 29a), which is quite an improvement as 

indicated in percentage (Fig. 29b). 
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Fig. 28 The measured well logs in the first 6 tracks with their assumed uncertainties 

(shaded area) and the resultant petrophysical parameters and their estimation errors 

(shaded area) in tracks 7-9 and the shale volume derived from factor analysis in the last 

track in Well-H 

 

However, the estimation errors in the impermeable sections (high shale volume) are 

still fairly high compared to those in permeable intervals, especially in case of water 

saturations. This is due to the strong correlation between the two model parameters, which 

could be possibly resolved by the redefinition of the probe response functions of the forward 

problem or estimating one of them from another reliable sources. 

 
Fig. 29 The decrease in average estimation errors due to the increased data-to-unknowns 

ratio of the interval inversion method (a). The improvement of estimation accuracy in 

percent (b) 
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The accurate estimation of these parameters is especially important since the 

irreducible and movable hydrocarbon volumes can be calculated as )1( 0, xirrhc SΦV   and 

)( 0, wxmovhc SSΦV  , respectively. The increased overdetermination ratio allows for the 

estimation of additional parameters within the inversion procedure, such as zone parameters 

or other constants found in the response equations of logging tools in Eqs. (21)-(26).  

3.4 Stability test of interval inversion procedure 

To check the stability of the proposed PSO-based interval inversion method, 10 

independent runs are performed for the case where the results of factor analysis are used to 

further increase the overdetermination-ratio of the procedure (Chapter 3.3.2). First, 45 

particles are initialized in the search space, each representing a possible solution of the 135 

series expansion coefficients. The initial candidates generated by PSO are very diverse (Fig. 

30a, b, c) and are of extremely high distance from the optimum.  

 

Fig. 30 Statistical distribution of the randomly generated starting models by PSO. The 

average data distance (a), the standard deviation (b) and the minimum data distance (c) of 

the solution candidates at initialization 

 

Then each solution candidate is refined by PSO according to Eqs. (12)-(13) in 100 

iteration steps and then the algorithm is switched to a linearized optimization phase to find 

the solution of the inverse problem in 15 more iteration steps. The data distance converges 

to the optimal value in all 10 independent runs (Fig. 31), which concurs with the findings 

that metaheuristic methods can be effectively applied to eliminate the starting model 

dependence of inverse problems (Pace et al. 2019).  
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Fig. 31 Convergence plots of the PSO-initialized interval inversion procedure for 10 

independent program runs 

 

Once the data distance between the measured and calculated data is adequately small 

(~15%), the optimization can be continued by a faster linearized algorithm to find the final 

solution of the series expansion coefficients without trapping in a local minimum. Here the 

average data distance reached at the end of the procedure is 5.22% with a standard deviation 

of only 0.0027%. This proves the applicability and the effectiveness of the suggested hybrid 

method for solving the wireline logging inverse problem. However, since PSO is a 

metaheuristic, the presented method could be applied to a wide range of optimization 

problems where setting an initial model is problematic, e.g., a similar two-step process was 

effectively applied for full-waveform inversion, where very fast simulated annealing was 

combined with a conventional gradient-based method (Datta and Sen 2016).  

3.5 Summary 

The suggested new PSO-based metaheuristic inversion approach for estimating the 

series expansion coefficients proves to be quick and effective. The starting model 

dependence of the procedure is virtually eliminated by PSO and the switch to the linearized 

DLSQ method near the optimum greatly reduces the runtime of the inversion and allows for 

the calculation of estimation errors. It is shown that the shale volume derived by factor 

analysis from a given dataset can be successfully incorporated into the interval inversion of 

the same dataset to increase its data-to-unknowns ratio, and thus improving the estimation 
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accuracy of the estimated petrophysical parameters. A 56.3% increase in the 

overdetermination ratio results in a 9.2% improvement in the estimation accuracy of 

porosity, 33.9% improvement of water saturation in the virgin zone and 30.6% improvement 

of the water saturation in the flushed zone. These parameters are the basis for calculating the 

volume of movable hydrocarbons, therefore their most reliable estimation is of crucial 

importance. The increased overdetermination ratio would also give the possibility to 

automatically estimate the value of some zone parameters within inversion, while still 

maintaining a good level of spatial resolution of the estimated model parameters. The 

suggested inversion procedure to increase the overdetermination of the well logging inverse 

problem can be very effectively used for unconventional (shale gas) reservoirs where multi-

mineral models need to be built and therefore the number of unknowns is considerably 

higher than in case of conventional reservoirs (Szabó and Dobróka 2020). 

 

Thesis 3. 

I have developed a particle swarm optimization based interval inversion method for 

estimating the petrophysical parameters of hydrocarbon formations from wireline logging 

data. The implementation of the metaheuristic approach highly reduces the starting model 

dependence of the inverse problem. I have increased the overdetermination ratio of the 

interval inversion method by incorporating the factor analysis derived shale volume log into 

the inversion procedure. Thus, by taking shale volume along the inverted interval as known 

(fixed) parameter, the number of unknown model parameters is decreased and the accuracy 

and reliability of the estimated petrophysical model is significantly improved. I performed 

detailed stability tests, and proved that the results of randomly initialized PSO-based interval 

inversion procedures are consistent. 
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4. THE AUTOMATED SELECTION OF CONTROL PARAMETERS 

FOR THE FA-PSO METHOD (FA-PSO-CC) 

PSO as a metaheuristic approach, its output is highly effected by the control 

parameters that worth to be set as optimal as possible at the start of the searching mechanism. 

These parameters are usually chosen according to empirical suggestions from literature, 

which can make a problem ambiguous. In this section, I develop an algorithm to generalize 

the presented PSO-based factor analysis (FA-PSO) in regard of the c1 and c2 control 

parameters (see Eq. (13)). For this purpose, these control parameters are set by simulated 

annealing in an outer loop of the algorithm in an automated way and then in the inner loop 

of the procedure, FA-PSO is run with the newly estimated c1 and c2 control parameters 

(Abordán and Szabó 2019b). The newly developed method is named FA-PSO-CC.  

 

Fig. 32 Workflow of the suggested FA-PSO-CC well-log-analysis procedure 

 

The suggested meta-algorithmic optimization approach is tested on the wireline 

logging dataset measured in the thermal water exploratory well in Baktalórántháza (Well-

A), north-east Hungary (Fig. 11). The well is 1,197 m deep and the well logs from its upper 

Pleistocene section (100-193.1 m) were utilized for testing the FA-PSO method in Chapter 
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1.2.1. Here, a Pliocene interval is processed from 448.5 m to 486.4 m. Once the optimal 

values of the control parameters c1 and c2 of the FA-PSO method are found by SA 

(Metropolis et al. 1953), factor logs are extracted from the well logging dataset, the first of 

which is related to the shale volume of the investigated formation. Results of the method are 

also confirmed by core data. 

4.1 Field test – Baktalórántháza 

The utilized wireline logging dataset consists of natural gamma-ray intensity (GR), 

spontaneous potential (SP), shallow resistivity (RS), gamma-gamma intensity (GG) and 

neutron-neutron intensity (NN) logs. The investigated interval is from 448.5 m to 486.4 

m, which consists mainly of shaly-sand, shaly marl and gravel layers. The workflow of 

the FA-PSO-CC procedure can be seen in Fig. 32. As a first step, factor loadings are 

calculated for three factors by Eq. (4). The resultant rotated factors are in Table 6. 

Table 6 Rotated factor loadings estimated by the FA-PSO method in Well-A 

Well logs Factor 1 Factor 2 Factor 3 

GR 0.7460 0.1005 0.1653 

SP 0.5995 0.5136 0.3021 

NN −0.1311 −0.4922 −0.5660 

GG 0.1371 0.7215 0.0329 

RS −0.3724 0.0077 −0.6280 

 

As expected, the first extracted factor as a lithological indicator strongly correlates 

with the natural gamma-ray and spontaneous potential logs. The second factor is mainly 

related to the gamma-gamma, spontaneous potential and neutron-neutron logs, while the 

third factor is correlated negatively to the shallow resistivity and neutron-neutron logs. 

Then the objective function defined in Eq. (7) is minimized by PSO. In this example, 90 

particles are generated in the search space, each representing a solution for the factor 

scores f, by extracting three factors, the number of unknowns to be estimated is (3 factors 

× 380 measured depth points) 1,140. For the PSO algorithm the inertia weight w is set 

according to Eq. (14). Then the values of c1 and c2 control parameters are optimized by 

SA. The usually recommended (default) setting is 2 for both parameters (Kennedy and 

Eberhart 1995). To test the presented method, at the beginning of the SA procedure, both 

c1 and c2 are set as 1 and in every iteration step their value is slightly altered by adding a 

small b perturbation parameter to both values. Then with these new control parameters, 

the PSO-based factor analysis is run for 3,000 iteration steps. If the energy difference 
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(ΔE) in two subsequent iteration steps of the SA algorithm in the outer loop of the 

algorithm according to Eq. (7) is negative, then the new values of c1 and c2 are accepted 

and the procedure is continued. If the energy difference is greater than 0, then the 

probability of accepting the new control parameters is given by Pa=exp(-ΔE/T), where T 

is the current temperature of the system. During the iteration process, the temperature of 

the system is reduced logarithmically according to Eq. (9). The new control parameters 

are accepted only if a randomly generated number from the range of 0 and 1 is smaller 

than Pa. This is a fundamental feature of the SA algorithm; it prevents the search from 

being stuck in a local minimum near the starting model. SA is run for a 100 iteration steps 

to find the optimal values of c1 and c2. The newly generated control parameters are tested 

in each SA iteration step by running the FA-PSO method for 3,000 iterations for three 

consecutive times to eliminate its probabilistic nature, especially in the early stages, 

where data distances remain fairly far from the optimum because of the suboptimal c1 and 

c2 control parameters. The mean of the three consecutive FA-PSO runs for each SA 

iteration can be seen in Fig. 33. After 48 iteration loops SA finds the optimal values of 

the control parameters for the FA-PSO algorithm and data distance does not decrease any 

further. 

 

Fig. 33 Convergence of data distance (on the right) by altering control parameters c1 and c2 

of the FA-PSO method (on the left) 

 

In the last iteration step, the smallest data distance was found by using c1=1.60 and 

c2=1.96. Then the PSO-based factor analysis was run for 3,000 iteration steps with these 

parameters to find the optimal solution of the factor scores f. The convergence of data 

distance can be seen in Fig. 34 on the left. After 3,000 iterations the data distance decreased 

to 0.404. By regression analysis between the first extracted factor (F1) scaled in the range of 
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0 to 100 according to Eq. (10) and the shale volume estimated by deterministic modeling 

resulted in a linear relationship (Fig. 34 on the right) in the form suggested by Szabó et al. 

(2014)  

 baFVsh  1
, (38) 

where the regression coefficients with 95% confidence bounds are calculated to be a=0.5005 

[amin=0.4771, amax=0.5239] and b=30.41 [bmin= 29.39, bmax= 31.43]. 

 

Fig. 34 Convergence of the energy function (left) for FA-PSO-CC and the relationship 

between the first factor and shale volume (right) 

 

The Pearson’s correlation coefficient of 0.91 for the first scaled factor and the shale 

volume of the investigated interval indicates a strong linear relationship. Figure 35 presents 

the results of the suggested FA-PSO-CC method. In the first five tracks, the standardized 

input well logs can be seen in black and the calculated logs from the factor model by red 

dashed line. The fit between the measurements and predictions is relatively good. In the sixth 

track, the scaled first factor log is shown in blue and the last track contains the resultant shale 

volumes. Shale volume estimated by deterministic modeling (Larionov 1969) is drawn by a 

purple dashed line and the one estimated by factor analysis is shown in red. They match 

really well, which verifies the applicability of the method. The latter is also confirmed by 

laboratory measurements for shale volumes, which are indicated by dots in the same track. 
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Fig. 35 The input (black) and calculated well logs (red dashed line) in tracks 1-5, extracted 

first factor log by the FA-PSO-CC method in tack 6, and the resultant shale volumes in 

track 7 in Well-A 

4.2 Summary 

For the generalization of the developed FA-PSO method, selection of c1 and c2 

control parameters of the PSO algorithm was done by an automated simulated annealing-

based iterative procedure known commonly as a hyperparameter estimation approach in the 

terminology of machine learning. By regression analysis, a linear relationship was found 

between the first extracted factor and shale volume, which forms a basis of the estimation of 

the shaliness of the investigated formation from well logs. The good fit between the 

measured and calculated well logs and the match between the estimated shale volumes by 

deterministic modeling, the suggested improved FA-PSO method and core analysis indicate 

the applicability of the method. 
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Thesis 4. 

I have developed a hyperparameter estimation based data processing approach for 

the automated selection of control parameters c1 and c2 for the particle swarm optimization 

assisted factor analysis (FA-PSO). The factor scores are estimated in the inner loop of FA-

PSO-CC, while the optimal values of control parameters c1 and c2 are automatically 

determined in an outer iteration loop by simulated annealing. By processing in-situ well 

logging data, I proved the feasibility of the suggested method in Hungarian groundwater 

formations, and estimated the shale volume directly from the global optimization-derived 

factor scores. The result was confirmed also by core measurements. 
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5. SIMULTANEOUS OPTIMIZATION OF FACTOR LOADINGS AND 

FACTOR SCORES FOR THE FA-PSO METHOD (FA-PSO-FL) 

In case of the suggested methods for the solution of factor analysis in Chapter 1 (FA-

SA, FA-PSO), only the vector of factor scores f is estimated by either simulated annealing 

or the particle swarm optimization technique in the model of factor analysis efLd 
~

. 

Prior to the approximation of factor scores, first the values of factor loadings L
~

 are calculated 

by Eq. (4) with the non-iterative approximate method suggested by Jöreskog (2007) and then 

are fixed for the remainder of the procedure. Thus the unknowns of the inverse problem are 

only the factor scores, which are estimated iteratively to decrease the misfit between the 

measured well logs collected in the column vector d and the theoretical well logs that are 

given by the multiplication fL
~

in the model of factor analysis Eq. (6). An iteratively re-

weighted optimization solution for both the factor scores and factor loadings was first 

suggested by Szabó and Dobróka (2017) for oilfield applications. Then Szabó et al. (2017) 

applied a similar linearized optimization procedure for the interpretation of engineering 

geophysical sounding logs. 

Here, I suggest the simultaneous optimization of both the factor scores and factor 

loadings in an iterative procedure by particle swarm optimization to give a fully automated 

solution and to even further decrease the misfit between the observed and calculated data. 

The developed method has been chosen to call as FA-PSO-FL. Once the input wireline logs 

are standardized and collected in vector d, the solution is initialized by solving Eq. (4) to 

estimate the values of factor loadings by the method of Jöreskog. As well as before, the 

loadings are rotated with the varimax algorithm for getting more meaningful factors. Then 

to test the capabilities of the suggested metaheuristic procedure (Fig.36), the estimated 

matrix of factor loadings is contaminated with 25% Gaussian distributed noise. 
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Fig. 36 Workflow of the suggested well-log-analysis procedure 

 

As the next step, these loadings are fixed and by minimizing the difference between 

the measured data d and the calculated data fL
~

, a first approximation is given for the factor 

scores by PSO. In all steps, the L2-norm based objective function defined in Eq. (7) is being 

minimized. Once a first approximation is given for the column vector f, PSO is initialized to 

optimize the factor loadings, while the factor scores are kept fixed. Thus in each step, either 

the factor scores or the factor loadings are optimized while the other is kept constant until 

the fit between the measured and calculated data is minimized. 

5.1 Feasibility test at Baktalórántháza site 

This improved version of the developed FA-PSO method is tested on the wireline 

logging dataset measured in the thermal water well in Baktalórántháza, north-east Hungary 

(Fig. 11). Here, the same Pliocene interval is processed from 448.5 m to 486.4 m as in 
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Chapter 4.1, which consists mainly of shaly-sand, shaly marl and gravel layers. The initial 

vales of factor loadings given by solving Eq. (4) and then rotated by the varimax algorithm 

can be seen in Table 7. 

Table 7 Rotated factor loadings estimated by Jöreskog’s approach in Well-A 

Well logs Factor 1 Factor 2 Factor 3 

GR 0.7460 0.1005 0.1653 

SP 0.5995 0.5136 0.3021 

NN −0.1311 −0.4922 −0.5660 

GG 0.1371 0.7215 0.0329 

RS −0.3724 0.0077 −0.6280 

 

By extracting three factors, the number of unknowns to be estimated is (3 

factors×380 measured depth points) 1,140.  Therefore, the algorithm of PSO in the next 

phase has to find the global optimum by finding the optimal values of 1,140 variables along 

the borehole, i.e., factor scores. This is done in 3,000 iteration steps with 90 particles and all 

other control parameters of the algorithm identical to the ones detailed in Chapter 4.1. Then 

the PSO estimated vector of factor scores f is fixed, and the factor loadings are optimized by 

utilizing 60 particles in 300 iteration steps. In this phase of the inversion, the number of 

inversion unknowns is only 15 (3 factor logs × 5 factor loadings). That is the reason for the 

decreased number of necessary iteration steps and particles. In the phase of factor loadings 

optimization, the search space of PSO is set to -1 to 1. These PSO steps for the optimization 

for the factor scores and factor loadings are repeated five times as Fig. 37 indicates, which 

took 5 minutes. 

 

Fig. 37 The convergence of the fully automated PSO based factor analysis (FA-PSO-FL) 

method in Well-A 
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The first plotted iteration is the end of the first approximation of the vector of factor 

scores by PSO. This is slightly higher than it is in Chapter 4.1 for the same dataset with 

identical control parameters for the PSO algorithm. This is due to the fact that here the matrix 

of factor loadings is contaminated with 25% Gaussian noise. However, after five iteration 

loops, this further improved PSO-based factor analysis reaches an even lower misfit. The 

PSO estimated factor loadings are in Table 8. 

Table 8 Factor loadings estimated by the FA-PSO-FL method in Well-A 

Well logs Factor 1 Factor 2 Factor 3 

GR 0.7823 0.1119 0.1145 

SP 0.5459 0.4262 0.2805 

NN −0.1274 −0.4302 −0.7134 

GG 0.0503 0.6344 −0.1546 

RS −0.4399 −0.0073 −0.9903 

 

Based on Table 8, one can see that the PSO optimized factor loadings are turned out 

to be very close to the original Jöreskog solution (Table 7) by Eq. (4). The new algorithm 

(FA-PSO-FL) managed to decrease the data distance even further found in Chapter 4.1 for 

the same dataset even though 25% Gaussian noise was added initially to the matrix of factor 

loadings.   

 

Fig. 38 Regression relationship between the first factor log estimated by the FA-PSO-FL 

method and shale volume derived from GR log based deterministic modeling in Well-A 

 

For Eq. (38) the regression coefficients with 95% confidence bounds are calculated 

to be a=0.5035 [amin=0.4833, amax=0.5236] and b=30.73 [bmin= 29.87, bmax= 31.6]. The 

correlation coefficient of 0.93 shows a strong linear relationship between the first extracted 
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factor and shale volume. Compared to the results of the FA-PSO method in Chapter 4.1 (Fig. 

34) it increased by 0.02. The input and resultant logs of the developed method are plotted in 

Fig 39. In the first five tracks, the measured (standardized) well logs are plotted in black and 

the calculated logs from the factor model by red dashed line. 

 

Fig. 39 Resultant logs of the fully PSO based factor analysis. Measured (black) and 

calculated logs (red dashed line) in tracks 1-5, scaled first factor in track 6 and the resultant 

shale volumes in track 7 in Well-A 

 

The fit between the measured and calculated logs is fairly good. In the sixth track, 

the scaled first factor log is shown in blue and the last track contains the estimated shale 

volumes. The deterministically calculated shale volume (Larionov 1969) is plotted in purple 

dashed line and the one estimated by factor analysis is shown in red. The fit between the two 

is quite good, which verifies the applicability of the method. Shale volumes are also 

confirmed by laboratory measurements (dots). 
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5.2 Summary 

In this chapter, I have further improved the particle swarm optimization based factor analysis 

(FA-PSO) suggested in Chapter 1.2. To give a fully optimized solution for the model of 

factor analysis, I have implemented an inner loop into the FA-PSO method, in which the 

factor loadings are optimized based on the misfit between measured well logs and calculated 

data ( fL
~

). The tests on an actual wireline logging dataset indicate that the data distance in 

the data space can be slightly decreased compared to the normal FA-PSO solution. This also 

results in a moderate improvement for the correlation coefficient between the first extracted 

factor and shale volume. 

 

Thesis 5. 

I have further developed the particle swarm optimization-based factor analysis 

algorithm (FA-PSO) given in Thesis 1 by iteratively re-calculating the factor loadings. The 

factor scores and factor loadings are optimized simultaneously in a stable inversion 

procedure. The newly developed algorithm of factor analysis - named FA-PSO-FL - 

optimizes the factor loadings as well by PSO based on the misfit between the observed and 

calculated well logging data. By processing in situ data, I proved the feasibility of the 

suggested method in Hungarian groundwater formations, and estimated the shale volume 

directly from the global optimization-derived factor scores. The estimation result was also 

confirmed by core measurements. 
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6. SUMMARY 

In my PhD thesis, I have summarized my method developments for the advanced 

processing of wireline logging data that I have carried out at the Department of Geophysics, 

University of Miskolc. My aim was to develop advanced data processing methods that can 

be applied on actual well logging datasets. For testing purposes, I gathered datasets ranging 

from groundwater formations to hydrocarbon bearing formations. I have carried out all 

method developments introduced in this thesis in MATLAB environment. 

As a first step, I have modified the mathematical algorithm of factor analysis. I have 

developed methods where the factor scores are estimated by Metropolis algorithm-based 

simulated annealing and the particle swarm optimization technique based on the misfit of 

measured and calculated data. This approach gives an alternative way to extract the factors 

from well logging datasets in a reliable way. Based on previous studies, I have shown that 

the first factor extracted by the developed FA-SA and FA-PSO methods strongly correlates 

to shale volume of different geological formations. The relationship between the first factor 

and the shale volume of the investigated formation can be readily established by regression 

analysis. 

I have determined the correlation relationship between the first factor estimated by 

the particle swarm optimization based factor analysis (FA-PSO) and the decimal logarithm 

of permeability of hydrocarbon bearing formations. The method has been tested on 

Hungarian hydrocarbon bearing formations using both core plug and deterministic modeling 

derived permeability data. It is proved that the developed method can provide an independent 

estimate for permeability in oilfield practice. 

I have developed a particle swarm optimization based interval inversion method for 

estimating the petrophysical parameters of inhomogeneous layers from wireline logging 

data. The implementation of the metaheuristic approach almost completely eliminates the 

starting model dependence of the inverse problem. Thus the starting model does not need to 

be very close to the optimal solution as in case of linearized inversions. I have also increased 

the overdetermination ratio of the interval inversion method by incorporating the particle 

swarm optimization assisted factor analysis (FA-PSO) derived shale volume log into the 

inversion procedure, thus improving the estimation accuracy of the model parameters. 

I have further developed the suggested FA-PSO method by using a hyperparameter 

estimation approach in which the optimal values of control parameters c1 and c2 are set in an 

automated way by simulated annealing in an outer iteration loop (FA-PSO-CC). These 
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parameters control the movement of the solution candidates in the search space. Thus I 

generalized the FA-PSO method in regard of these two control parameters, so there is no 

need to set them manually in the initialization phase. 

To offer an optimal solution for both the factor scores and factor loadings by the PSO 

based factor analysis, I have built in an inner loop where the factor loadings are recalculated 

along with the factor scores. The newly developed algorithm (FA-PSO-FL) optimizes the 

factor loadings as well by PSO based on the misfit between the observed and calculated data. 

Thus both the factor scores and factor loadings are optimized simultaneously in an iterative 

inversion procedure to further improve the results of factor analysis. 

In the framework of my PhD thesis I carried out inversion based method 

developments in MATLAB environment for the advanced processing of wireline logging 

data. The developed methods are capable to effectively process wireline logging datasets 

and to estimate the petrophysical parameters of formations which are necessary for the 

quantitative assessment of hydrocarbon and mineral resources. The improved factor analysis 

based data processing methods (FA-SA, FA-PSO, FA-PSO-CC, FA-PSO-FL) can provide a 

reliable and independent estimate to shale volume and permeability of sedimentary 

formations through regression analysis. Once the regression relationships are found between 

the first factor extracted from a well logging dataset and the petrophysical parameters (i.e., 

shale volume, permeability) of a given formation in a specific area, the relationships might 

be used in neighboring wells as well as an independent estimate to these parameters. This 

can reduce the operating costs, such as the need for taking more core samples to determine 

the before mentioned petrophysical parameters. The suggested globally optimized interval 

inversion method aided by factor analysis can estimate the petrophysical parameters from 

well logging data in a highly overdetermined procedure, which results in more accurate 

estimations of the desired petrophysical parameters. Since these parameters are the basis for 

calculating movable hydrocarbons their most reliable estimation is of crucial importance. 

The increased overdetermination ratio also gives the possibility to automatically estimate the 

value of some zone parameters within inversion, while still maintaining a good level of 

resolution of the estimated model parameters. In the future I intend to use this procedure for 

unconventional reservoirs where multi-mineral models need to be built and therefore the 

number of unknowns is considerably higher than in case of conventional reservoirs. 
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7. ÖSSZEFOGLALÁS 

A PhD dolgozatomban a Miskolci Egyetem Geofizikai Tanszékén elvégzett 

fúrólyuk-geofizikai módszerfejlesztéseimet foglaltam össze. A kutatómunkám célja olyan 

korszerű kiértékelési eljárások fejlesztése volt, melyek a terepi adatrendszerek 

feldolgozásánál is hatékonyan tárják fel az adatrendszerben rejlő földtani információt. Az új 

lyukgeofizikai módszerek alkalmazhatóságát vízkutatófúrás és szénhidrogén-kutatófúrások 

adatrendszerén tesztelem. Az értekezésben bemutatott módszerfejlesztések mindegyikét 

MATLAB környezetben fejlesztettem. 

A dolgozatban elsőként a faktoranalízis matematikai algoritmusát fejlesztettem 

tovább. A faktorérékek meghatározására két új módszert vezettem be, melyekben a 

faktorértékeket simulated annealing és particle swarm optimization eljárásokkal határozom 

meg a mért és számított adatok távolsága minimalizálása révén. A kifejlesztett módszerek 

megbízhatóan alkalmazhatóak a faktorértékek fúrólyuk-geofizikai adatrendszerekből 

történő meghatározására. Korábbi tanulmányok eredményeire támaszkodva bizonyítottam, 

hogy a kifejlesztett FA-SA és FA-PSO módszerekkel származtatott első faktor erősen 

korrelál különböző földtani szerkezetek agyagtartalmával. A vizsgált szelvényezési 

szakaszon az első faktor és az agyagtartalom közötti korrelációs kapcsolat 

regresszióelemzéssel könnyen meghatározható. 

A kifejlesztett globális optimalizáción alapuló faktoranalízis (FA-PSO) 

alkalmazásával meghatároztam a korrelációs kapcsolatot fúrólyuk-geofizikai 

adatrendszerekből származtatott első faktorszelvény és szénhidrogén-tároló formációk 

áteresztőképességének tízes alapú logaritmusa között. A módszer alkalmazhatóságát hazai 

szénhidrogén-kutatófúrásokban mért mélyfúrási geofizikai adatrendszereken és 

magadatokon teszteltem, mellyel bizonyítottam, hogy a kifejlesztett eljárással a 

gyakorlatban független becslés adható az áteresztőképességre. 

Particle swarm optimization alapú intervallum inverziós módszert fejlesztettem, 

amellyel inhomogén rétegek petrofizikai paraméterei határozhatók meg fúrólyuk-geofizikai 

adatokból. A kifejlesztett meta-heurisztikus módszer nagymértékben csökkenti az inverz 

probléma startmodell-függőségét. Megnöveltem az intervallum inverzió túlhatározottságát a 

faktoranalízisből (FA-PSO) származtatott agyagtartalom szelvény inverzióba való 

beintegrálásával, így növelve az inverzió által becsült modellparaméterek megbízhatóságát. 

Tovább javítva a kifejlesztett FA-PSO módszer hatékonyságát, hiperparaméter 

becslésen alapuló eljárást fejlesztettem, melyben a c1 és c2 vezérlőparaméterek 
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megválasztása automatikusan történik egy külső ciklusban simulated annealing segítségével 

(FA-PSO-CC). Ezen paraméterek nagymértékben befolyásolják az egyedek mozgását a 

paramétertérben. A javasolt eljárással elkerülhető, hogy értéküket empirikus összefüggések 

alapján kelljen megválasztanunk az eljárás inicializálásakor. 

Továbbfejlesztettem a PSO alapú faktoranalízist egy belső ciklus beépítésével a 

faktorsúlyok iteratív újraszámításhoz. Az újonnan fejlesztett eljárás (FA-PSO-FL) a 

faktorsúlyokat is a PSO eljárással optimalizálja a mért és számított adatok eltérésének 

minimalizálása alapján. Így a faktorértékek és a faktorsúlyok szimultán optimalizálásával 

összességében optimálisabb megoldást kínálva. 

A PhD dolgozatomban inverziós módszerfejlesztést végeztem fúrólyuk-geofizikai 

adatok hatékony és korszerű feldolgozása céljából. Az inverziós algoritmusokat MATLAB 

fejlesztési környezetben implementáltam. A kifejlesztett módszerek alkalmasak a különböző 

földtani képződmények petrofizikai paramétereinek a meghatározására, melyek segítségével 

lehetőség nyílik az ásványi nyersanyagkészletek meghatározására. A továbbfejlesztett 

faktoranalízis alapú módszerekkel (FA-SA, FA-PSO, FA-PSO-CC, FA-PSO-FL) független, 

megbízható becslés adható az üledékes rétegek agyagtartalmára és permeabilitására 

regresszióanalízisen keresztül. Fúrólyuk-geofizikai szelvényekből kinyert első faktor és 

adott földtani  formáció petrofizikai paraméterei (agyagtartalom, permeabilitás) között 

fennálló regressziós függvény ismeretében, a modell kiterjeszthető egy nagyobb mérési 

területre, amely által független becslés adható e paraméterekre. Így akár az ezen petrofizikai 

paraméterek meghatározására irányuló magmintavételek száma is csökkenthető. A 

kifejlesztett faktoranalízissel támogatott globális optimalizáción alapuló intervallum 

inverziós eljárás a petrofizikai paraméterek becslését egy nagymértékben túlhatározott 

feladat keretein belül végzi el, mellyel növelhető a modellparaméterek becslési pontossága 

és megbízhatósága. A kombinált inverziós eljárásban becsült kőzetfizikai paraméterek 

kiemelt fontossággal bírnak, mivel a gyakorlatban a kitermelhető szénhidrogén mennyiségét 

ezek alapján számítjuk. A megnövelt túlhatározottsággal lehetőség nyílik egyes 

zónaparaméterek inverzión belüli meghatározására is, miközben a becsült 

modellparaméterek felbontása nem romlik. Az eljárást a jövőben nem-konvencionális, több 

ásványtípusból felépülő szénhidrogén-tárolók kőzetfizikai modellezésére tervezem 

alkalmazni, ahol az ismeretlenek száma jóval magasabb, mint a hagyományos tárolók 

esetében. 
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