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Chapter 1 

INTRODUCTION 

Data processing is an essential discipline in the science and engineering fields of study. The 

ability to acquire quality information from interpretation largely depends on the efficacy of the 

data processing method applied. In geophysics applications where interpretations are made 

from data collected at the earth's surface to forecast subsurface features, the quality of the 

processing method is of great importance. In a broader perspective, this thesis focuses on the 

development of new methods in inversion-based Fourier transformation for geophysical 

applications in the area of regular and random data processing. The continual improvement in 

geophysical data acquisition over the years require more advanced data processing methods. 

Data translation from a time domain to the frequency domain is commonly practiced in 

geophysical data processing, which enhances interpretation, especially in signal processing. 

This change can be realized through the application of Fourier transformation. For individually 

sampled time-domain datasets, the Discrete Fourier Transformation (DFT) algorithm is usually 

applied to determine its Discrete Frequency Component (DFC). As measured data often contain 

noise, the noise sensitivity of the processing methods is an essential feature. The noise recorded 

in the time domain is directly transformed into the frequency domain. Hence, the traditional 

discrete variants of Fourier transformation, although very stable, are noise sensitive techniques 

that require improvement.   

To reduce this problem, an inversion based 1D Fourier transformation algorithm with 

the capability of reducing geophysical data outliers was presented by Dobróka et al. (2015) 

known as the Steiner Iteratively Reweighted Least Square Fourier Transform (S-IRLS-FT) 

which proved to be an effective tool for noise reduction. The method was generalized to 2D, 

and an application was presented in solving a reduction to the pole of a magnetic data set 

(Dobróka et al., 2017). Geophysical data processing covering inverse problem theory has a 

collection of methods with outstanding noise rejection capabilities. This necessitated the 

proposition to handle 1D Fourier Transform as an overdetermined inverse problem (Dobroka 

et al. 2012).  As established in the inverse problem theory, the simple least-squares give the 

best solution only when data noise follows Gaussian distribution. For outliers that are 

irregularly distributed large errors, the estimated model parameters may be highly inconclusive, 

which constitute a restrictive factor to the application of the least-squares method since 

geophysical measurements routinely contain outliers. To achieve statistical robustness, various 

methods have been developed over the years to deal with data outliers. A commonly applied 
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robust optimization method, the Least Absolute Deviation (LAD), minimizes the L1-norm 

characterizing the misfit between the observed and predicted data, and can be numerically 

achieved by using linear programming (Scales et al. 1988) or applying the Iteratively 

Reweighted Least Squares method (IRLS). Although largely used, continual practice 

demonstrates that inversion with minimization of the L1-norm gives more reliable estimates 

only when a smaller number of large errors contaminate the data. An alternative solution 

involves the use of the Cauchy criterion, which adopts a Cauchy-distributed data noise. The 

IRLS procedure, which iteratively recalculates the so-called Cauchy weights, results in a very 

efficient robust inversion method (Amundsen et al. 1991). The application of data weights in 

inversion is very crucial to guarantee each data contribute to the solution based on its error 

margin. Cauchy inversion is normally applied in geophysical inversion as a robust optimization 

method (Steiner F. 1997). The integration of the IRLS algorithm with Cauchy weights, though 

a useful procedure, problematic since the scale parameter of the weights has to be known prior 

to the inversion. Steiner (1988,1997) adequately solved this challenge by deriving the scale 

parameters from the real statistics of the data set in the framework of the Most Frequent Value 

(MFV) method. Dobróka et al. 1991 established globally that the MFV-weights calculated on 

the bases of Steiner’s method result in a very efficient robust inversion method by inserting 

them into an IRLS procedure. A successful application of the MFV method in processing 

borehole geophysical data was reported by Szűcs et al. 2006. The Cauchy weights improved by 

Steiner (the so-called Cauchy-Steiner weights) were further applied in robust tomography 

algorithms by Szegedi H. and Dobróka M., 2014.  

Relying on the above techniques, Dobróka et al. (2015) developed the inversion based 

1D Fourier transformation method known as the S-IRLS-FT, which proved to be an effective 

tool for noise reduction. It was revealed that the noise sensitivity of the continuous Fourier 

transform (and its discrete variants DFT and FFT) was sufficiently reduced by using robust 

inversion. The 1D Fourier transform was handled as a robust inverse problem using the IRLS 

algorithm with Cauchy-Steiner weights. The Fourier spectrum was further discretized using 

series expansion as a discretization tool. Series expansion based inversion methods were 

successfully used in the processing of borehole geophysical data (Szabó 2004, Dobróka et al. 

2010) as well as Induced polarization data (Turai et al. 2010). The S-IRLS-FT method was 

generalized to 2D, and an application presented in solving reduction to the pole of the magnetic 

data set (Dobróka et al., 2017). In this study, it is shown that the newly developed inversion-
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based Fourier transformation algorithm can also be used in processing a non-equidistant 

(random) measurement geometry dataset. 

 

Chapter 2 

THE INVERSION-BASED FOURIER TRANSFORM 

2.1 An Overview of Geophysical Inversion Methods 

An important part of geophysical studies is to make inferences about the interior of the earth 

from data collected at or near the surface of the earth. The measured data is indirectly related 

to the properties of the earth that are of interest. An inverse problem can be solved to obtain 

estimates of the physical properties within the earth. The aim of a geophysical inverse problem 

is to find an earth model described by a set of physical parameters that is consistent with the 

observational data (Barhen et al. 2000). The process first involves the calculation of simulated 

data for an earth model from a forward problem. Thus, accurate synthetic data is generated for 

an arbitrary model. The inverse problem is then posed as an optimization problem where the 

function to be optimized generally called the objective, misfit, or fitness function, which is a 

measure of the difference between observed data and synthetic data extrapolated. Due to data 

inaccuracies occurring from field measurement procedures and data processing techniques, the 

objective function often incorporates some additional form of regularization or constraints. Data 

Inversion problems are not restricted to geophysics but can be found in a wide variety of 

disciplines where inferences must be made based on indirect measurements.  

Inversion applications in geophysics require two special considerations when methods 

of solution are being generated. First, the observed data are usually incomplete in the sense that 

they do not contain enough information to resolve all features of the model. Solving a 

geophysical inverse problem normally involves finding an optimum solution and appraising the 

validity of that solution. The appraisal includes an analysis of resolution, which is a 

determination of what features of the solution are essential to explain the data. Invariably, the 

optimum solution is non-unique in the sense that some of its features could be changed without 

changing the fit to the data. Secondly, the observed data always has a noise component from 

two primary sources, a random component in the observed data and approximations or errors 

contained in the theory that connects the data and model. The presence of noise requires an 

analysis of uncertainty in the appraisal stage of the inverse problem, which is a determination 

of how much the optimum solution would change if a different realization of the noise were to 
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be used (Barhen et al. 2000). A seemingly possible problem to geophysical inverse solution is 

its non-uniqueness. Thus, there are many possible solutions to the problem. Hence, it requires 

a comprehensive explanation of the possible solutions in other to constrain the solution. 

Inversion methods development attempt this task by performing a general search of the model 

space including grid, random and pseudo-random searches. There are also methods that 

estimate a relative probability density for the model space. The common method of addressing 

the fundamental non-uniqueness of geophysical inverse problems is to impose additional 

constraints on the solution reducing the number of acceptable solutions (Parker, 1994; 

Oldenburg et al., 1998), and this process is known as regularization. Regularization is generally 

a measure of some property of the model that is deemed to be desirable. The constraints imposed 

on the model space try to retain certain properties that are thought to be necessary and are quite 

subjective, relying on information that is independent of the data. After parameterization of the 

data and model spaces, next is a determination of the constraint types to be placed upon the 

model space to specify a model or group of models that are compatible with a set of observations 

drawn from the data space. Several types of constraints are possible. A theoretical constraint 

involves mapping from the model space to the data space and allows a direct relationship to be 

established (Barhen et al. 2000).   

Numerous inversion techniques have been developed by various researchers for 

optimum objective function determination. Mostly used are the linear optimization methods 

due to their very quick and effective procedures in cases of the suitable initial model but are not 

absolute minimum searching methods and generally assign the solution to a local optimum of 

the objective function. This problem can be avoided by using global optimization methods, for 

example, Simulated Annealing (Metropolis et al., 1953) or Genetic Algorithm (Holland J.H, 

1975). Global optimization methods have high performance, great adaptability, and previously 

used in other fields such as well-logging interpretation (Zhou et al. 1992, Szucs and Civan 1996, 

Goswami et al. 2004 and Szabó 2004).  

2.1.1    Linearized Inversion Procedures 

For geophysical inverse problems where the relationship between the data and the model is 

linear, methods of solution are well developed and understood (Menke, 1989; Parker, 1994). 

Linear inversion methods are based on the solution of a set of linear equations, which are 

relatively fast procedures. These prevailing methods are used for several geophysical problems. 

The common starting point of these methods is the linearization of a function connection. In 
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formulating the discrete inverse problem, the column vector of 'M’ number of model parameters 

is introduced as 

                                                  �⃗⃗� = {𝑚1,𝑚2,…..,𝑚𝑀}
𝑇
                                                               (1) 

where 'T’ denotes the matrix transpose. Similarly, the 'N’ number of data measured by 

geophysical surveys are collected into the data vector 

                                             𝑑 𝑚 = {𝑑1
(𝑚)

, 𝑑2
(𝑚)

, … . . , 𝑑𝑁
(𝑚)

}
𝑇

                                                     (2) 

Let the calculated theoretical data be sorted into the following N-dimensional vector 

                                             𝑑 𝑐 = {𝑑1
(𝑐)

, 𝑑2
(𝑐)

, … . . , 𝑑𝑁
(𝑐)

}
𝑇

                                                         (3) 

a connection between vectors 𝑑 𝑐 and �⃗⃗�  is given as 

                                                        𝑑 𝑐 = 𝑔 (�⃗⃗� )                                                                         (4) 

Now, considering �⃗⃗� 0 as a starting point in the model space where 

                                                      �⃗⃗� = �⃗⃗� 0 + 𝛿�⃗⃗�                                                                      (5) 

the model correction vector is given by 𝛿�⃗⃗� . Let the connection be approximated by its Taylor 

series truncated at the first-order additive term, 

                                        𝑑𝒆𝒌
= 𝒈𝒌(�⃗⃗� 0) + ∑ (

𝜕𝑔𝑘

𝜕𝑚𝑗

)
�⃗⃗⃗� 𝑜

𝛿𝑚𝑗,
𝑀
𝑗=1       (k=1,2,….N)                     (6)      

By introducing the Jacobi’s matrix 

      𝐺𝑘𝑗 = (
𝜕𝑔𝑘

𝜕𝑚𝑗

)
�⃗⃗⃗� 𝑜

 and  𝑑𝑘
(0)

= 𝒈𝒌(�⃗⃗� 𝟎) 

Equation (6) can be written as 

                                                  𝑑𝒆𝒌
= 𝑑𝑘

(0)
+ ∑ 𝐺𝑘𝑗𝛿𝑚𝑗

𝑀
𝑗=1                                                     (7) 

or in vector form 

                            𝑑 𝑒 = 𝑑 (0) + 𝐺𝛿�⃗⃗�                                                              (8) 
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By applying    𝛿𝑑 = 𝑑 𝑒 − 𝑑 (0), it can be seen that 𝛿𝑑 = 𝐺𝛿�⃗⃗�  is the linearized form of equation 

(8). Different optimization principles are available for model parameterizations that are either 

continuous or discrete. Solutions based on maximum likelihood are normally used where data 

noise is present, and its distribution is known. Measurement of resolution in both the data space 

and model space can also be calculated (Berryman, 2000), allowing quantitative estimates of 

the fitting of the data and the uniqueness of the model. The Gaussian least-square, which 

minimizes the L2-norm of the deviation vector, has proven to be a faster and an operative linear 

method. The objective function to be minimized is the squared L2-norm of the deviation vector 

characterizing the misfit between the calculated and observed data, given as 

                   𝐸 = 𝑒 𝑇𝑒 = ∑ 𝑒𝑘
2𝑁

𝑘=1 = ∑ (𝑑𝑘 − ∑ 𝐺𝑘𝑗𝑚𝑗
𝑀
𝐽=1 )𝑁

𝑘=1 (𝑑𝑘 − ∑ 𝐺𝑘𝑖𝑚𝑖
𝑀
𝑖=1 )               (9) 

which has optimum if the following set of equations are fulfilled for l = 1, 2,…..,M   

where 
𝜕𝐸

𝜕𝑚𝑙
= 0 , and minimized to the normal equation 

                                         ∑ 𝑚𝑖
𝑀
𝑖=1 ∑ 𝐺𝑘𝑖

𝑁
𝑘=1 𝐺𝑘𝑙 = ∑ 𝐺𝑘𝑙

𝑁
𝑘=1 𝑑𝑘                                           (10) 

with a vectorial form given as 

                                                       𝐺𝑇𝐺 �⃗⃗� =  𝐺𝑇𝑑                                                                (11) 

 Here, the model parameters are obtained from 

                                                   �⃗⃗� = (𝐺𝑇𝐺)−1𝐺𝑇𝑑                                                              (12) 

A similarly applicable linearized procedure is the Weighted Least Squares Method. The 

Weighted Least Squares Method can be effectively used for solving overdetermined inverse 

problems (Menke, 1984) and efficiently suppresses data outliers. It is often encountered that 

the uncertainties of observed data are of different amounts, which requires that a datum 

contributes to the solution with a given weight proportional to its uncertainty. This is done by 

the application of a symmetric weighting matrix, which includes the weighs of the data in its 

main diagonal. The solution is developed by the minimization of the following objective 

function 

                  𝐸 = 𝑒 𝑇𝑊𝑒 = ∑ (𝑑𝑘 − ∑ 𝐺𝑘𝑖𝑚𝑖
𝑀
𝑖=1 )∑ 𝑊𝑘𝑟

𝑁
𝑟=1

𝑁
𝑘=1 (𝑑𝑟 − ∑ 𝐺𝑟𝑗𝑚𝑗

𝑀
𝑗=1 )              (13) 

where 
𝜕𝐸

𝜕𝑚𝑙
= 0 and minimize to the normal equation, 
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𝜕𝐸

𝜕𝑚𝑙
= 2∑ 𝑚𝑖

𝑀
𝑖=1 ∑ ∑ 𝑊𝑘𝑟

𝑁
𝑟=1 𝐺𝑘𝑖

𝑁
𝑘=1 𝐺𝑟𝑙 − 2∑ 𝑑𝑘

𝑁
𝑘=1 ∑ 𝑊𝑘𝑟

𝑁
𝑘=1 𝐺𝑟𝑙 = 0              (14) 

With a vectorial form,     

                                                  𝐺𝑇𝑊 𝐺 �⃗⃗� =  𝐺𝑇𝑊𝑑                                                           (15) 

 Here, the model parameters are estimated from    

                                              �⃗⃗� = (𝐺𝑇𝑊 𝐺)−1𝐺𝑇𝑊𝑑                                                          (16) 

The actual model is gradually refined until the best fitting between measured and calculated 

data is achieved in the inversion procedure. Although very useful, Linearized Inversion 

Procedures has a general possibility to map noise in the data directly into a measure of 

uncertainty in the model space and hence, requires more optimum handling of regularization. 

As discussed earlier, most geophysical inverse problems are not well-posed as originally 

formulated and usually involve the imposition of some form of regularization to alleviate the 

situation. Rarely but decisively, the degree of regularization is optimized as part of obtaining 

the solution by the introduction of an independent variable parameter. With a wider application 

that exists for solving linear inverse problems, it is possible to formulate problems so that linear 

methods can be used whenever possible. Problems that are not too strongly non-linear can be 

solved by the process of linearization. As much as the solution does not stray too far from a 

reference model, the problem can be solved with standard linear methods, including the 

standard linear estimates of resolution and uncertainty.  In circumstances where the reference 

model is unknown, it is handled by an iterated linearization procedure in which a new reference 

model is produced, the entire linearization and solution process is then repeated. This type of 

linearized approach to the solution of an inverse problem is commonly used in the location of 

earthquakes, where it is known as Geiger's method (Lee and Stewart, 1981). Linearized methods 

do not guarantee to find the absolute minimum of the objective function as they tend to assign 

the solution to some local minimum. This problem requires to apply such methods that can seek 

the global minimum of the objective function. Global optimization methods such as Simulated 

Annealing and Genetic Algorithms can be used effectively to find a global optimum in 

geophysical applications. 

2.1.2   Global Inversion Procedures 

For geophysical inverse problems where both the objective function and the constraints are 

significantly nonlinear in the model space, Global Inversion Procedures are applied. This may 
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include a derivative or non-derivative based approach to solving the problem. Several 

developed solutions make use of derivatives, global and local convergence. For problems 

without constraints, Newton's method is applicable while those requiring both first and second 

derivatives, the Hessian matrix and Nonlinear Conjugate Gradient Methods (Paige and 

Saunders, 1982) have provided satisfactory results (Nolet, 1984, 1985, Newman and 

Alumbaugh, 1997). Some developed procedures solve a non-linear inverse problem by solving 

a series of linearized problems. Practically, this is not different from standard iterative methods 

developed for solving non-linear problems such as the line search and trust region methods 

(Dennis and Schnabel, 1996). It is advantageous to use these established non-linear methods as 

convergence proofs exist, and well-tested algorithms are accessible. For many geophysical 

problems, it is difficult to justify the linearization of a problem when efficient methods of 

solving the non-linear problem are available. 

Methods without derivatives such as Genetic Algorithms, Simulated Annealing, and Pattern 

Search Algorithms have seen considerable development and preference over the years because 

they are less likely to converge to a nearby local optimum than derivative-based methods. 

Multiple solutions are important for non-linear inverse problems, as most optimization 

methods only provide a local extremum, and separate procedures are used to find a more global 

extremum. Methods specifically designed to find global optima are the grid and stochastic 

search methods. Grid search methods are mostly applicable to smaller problems whilst larger 

problems require a Monte Carlo search, which has the advantage of being simple to implement 

and easy to check (Mosegaard and Tarantola, 1995; Mosegaard, 1998). However, for most 

geophysical inverse problems, the number of model parameters and the required accuracy are 

such that a complete Monte-Carlo search is unfeasible, simply because of the number of times 

the forward problem would have to be calculated to achieve sufficient sampling of the model 

space. While neither enumerative nor completely random searches of the model space have 

proven to be an effective method of solving larger geophysical inverse problems, there are some 

directed or pseudo-random search methods such as Simulated Annealing and Genetic 

Algorithms that have been more successful. Both approaches retain some aspects of a random 

statistical search of the model space but use the gradually accumulating information about 

acceptable models to direct the search and appear to be feasible for moderately sized problems 

where a full Monte Carlo approach would be prohibitive (Scales et al., 1992). 

Simulated Annealing is based upon an analogy with a natural optimization process in 

thermodynamics and uses a directed stochastic search of the model space. It requires no 

derivative information. Its use in numerical optimization problems began with Kirkpatrick et 
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al. (1983) and was first use in geophysical problems by Rothman (1985, 1986). A review of the 

method and its application to geophysical problems can be found in Sen and Stoffa (1995). The 

Simulated Annealing (SA) approach covers a group of global optimization methods. The 

earliest form is called the Metropolis algorithm, which was further developed to improve mainly 

the speed of the optimum-seeking procedure, referred to as the fast and very fast Simulated 

Annealing methods. The Metropolis Simulated Annealing (MSA) algorithm employs the 

heating technology to search for the global optimum of an objective function and has been 

applied in several geophysical probes, for instance, in calculating seismic static corrections 

(Rothman, 1985; Rothman, 1986; Sen and Stoffa, 1997), global inversion of vertical electric 

sounding data collected above a parallel layered 1-D structure (Sen et al., 1993). The advantages 

of MSA are initial model independence, simple and clear-cut program coding, and exact 

mathematical treatment of the conditions of finding a global optimum. The method has a slow 

rate of convergence, which sets a limit to the reduction of control temperature. 

Genetic algorithms are direct search methods based on the natural optimization 

processes found in the evolution of biological systems (Goldberg, 1989). It applies the operators 

of coding, selection, crossover, and mutation to a finite population of models and allows the 

principle of "survival of the fittest" to guide the population toward a composition that contains 

the optimum model (Barhen et, al. 2000). The first application for its use in solving optimization 

problems was proposed by John Holland (1975) and has been applied to several geophysical 

problems (Stoffa and Sen, 1991; Sen and Stoffa, 1992, 1995; Sambridge and Drijkoningen, 

1992; Kennett and Sambridge, 1992; Everett and Schultz, 1993; Sambridge and Gallagher, 

1993; Nolte and Frazer, 1994; Boschetti et aI., 1996; Parker, 1999). The Genetic Algorithm 

procedure improves a population of random models in an iteration process. In optimization 

problems, the model is considered as an individual of an artificial population. Each individual 

of a given generation has a fitness value, which represents its survival ability. The purpose of 

the Genetic algorithm procedure is to improve the subsequent populations by maximizing the 

average fitness of individuals. In application, the fitness function is connected to the distance 

between the observed data and theoretical data calculated. Normally, an initial population of 

models is generated from the search space randomly. In the forward modeling phase of the 

inversion procedure, theoretical data are calculated for each model and then compared to real 

measurements. The model population is improved through the use of some random genetic 

operations such as selection, crossover, mutation, and reproduction to reduce the misfit between 

the observation and prediction data. Instead of a one-point search, several models are analyzed 
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simultaneously to avoid the local optimum places in the model space. The Genetic Algorithm 

technique is also advantageous because it does not require the calculation of derivatives and 

require less prior information. It is practically independent of the initial model. Approaches that 

attempt some combination of stochastic and deterministic search methods would appear to hold 

considerable promise in optimization. This will enable a combination of the global search 

property of the stochastic methods with the efficiency of the deterministic methods. 

2.2 The Series Expansion-Based Inversion Methods 

Complex geological structures require the forward problem to be solved by approximate 

numerical methods such as finite difference (FDM) and finite element (FEM) methods. These 

methods enable the use of discretization for the adequate approximation of a spectrum. For 

instance, a space can be divided into properly sized blocks or an accurate number of cells. In 

this case, adequate calculations require some distinct number of cells in both horizontal and 

vertical directions. In the inverse problem solution, the physical parameters of the cells are 

assumed to be unknowns. At the Department of Geophysics, the University of Miskolc, the 

series expansion-based discretization scheme, which is based on the discretization of the model 

parameter is suggested and have proven to be useful in several cases. Considering a model 

parameter showing spatial dependency in the form of series expansion,   

                                  𝑝(𝑥, 𝑦, 𝑧) = ∑ ∑ ∑ 𝐵𝑙Ψ𝑖
𝑁𝑧
𝑘=1

𝑁𝑦

𝑗=1
𝑁𝑥
𝑖=1 (𝑥)Ψ𝑗(𝑦)Ψ𝑘(𝑧)                              (17) 

Where Ψ𝑖 … . .Ψ𝑁 are the basis functions and 𝑁𝑥, 𝑁𝑦, 𝑁𝑧 are the requisite numbers in the 

description of x,y,z dependencies. The basis functions constitute an orthonormal system of 

functions and are chosen carefully since they affect the stability of the entire inversion 

procedure. The unknowns of the inverse problem (model parameters) are the series expansion 

coefficients 𝐵𝑙, and their number is given as 𝑀 = 𝑁𝑥, 𝑁𝑦, 𝑁𝑧. Based on the number of elements 

of the model vector and data available, the inverse problem may be underdetermined, 

overdetermined or mixed determined. If the number of data is more than that of the model 

parameters (N>M), the inverse problem is overdetermined. As explained earlier, an 

overdetermined problem can be solved adequately with the Gaussian Least Squares by 

minimizing the 𝑙2-norm but can be weighted when the data has uncertainties. In the previous 

case, it is unnecessary to use additional constraints because the result is dependent only on the 

data. Conclusions from the study of the purely underdetermined inverse problem show that a 

unique solution could be obtained only by assuming additional conditions, which cannot be 
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joined to measurements. These conditions should formulate an obvious requirement on the 

solution such that they introduce some level of simplicity, smoothness, or have a significant 

effect on the magnitude of the derivatives. In some cases, the use of additional conditions can 

be advantageous, but in extremely underdetermined problems, the solution is problematic.  

2.2.1 The Algorithm  

In most appropriate situations in geophysical inversion, a priori information about the area of 

investigation is usually accessible for the interpretation. This knowledge is of great importance 

during the inversion procedure since the inversion algorithms have internal uncertainty 

(instability, ambiguity), which can be reduced by the use of a priori information. Series 

expansion-based inversion procedures have a similar situation as one can only assume or 

specify the number of expansion coefficients. With adequate information about the structure, 

one can make additional assumptions within the series expansion-based inversion method, 

which can facilitate a reduction in the number of unknowns of the inverse problem. In case of 

a 3-D Layer-wise homogeneous model, the q-th layer-boundary can be described as a function  

z = fq(x, y), which can be discretized by series expansion as, 

                                   𝑧 = 𝑓𝑞(𝑥, 𝑦) = ∑ ∑ 𝐶𝑙
(𝑞)𝑁𝑦

(𝑞)

𝑗=1

𝑁𝑥
(𝑞)

𝑖=1 Ψ𝑗(𝑥)Ψ𝑗(𝑦)                                     (18) 

Where 𝐶𝑙
(𝑞)

 represents the expansion coefficients, 𝑙 = 𝐿𝑞 + 𝑖 + (𝑗 − 1) ∗ 𝑁𝑥, 𝐿𝑞 is the initial 

index required in the q-th layer. The number of unknowns for a given layer-boundary 

is 𝑁𝑥
(𝑞)

𝑁𝑦
(𝑞)

, while that of the P-layered model assuming one physical parameter per layer is 

                                                M = ∑ 𝑁𝑥
(𝑞)𝑝

𝑞=1 𝑁𝑦
(𝑞)

+ 𝑃 + 1                                               (19) 

In practice, assuming a layer-wise homogeneous model is often not adequate. For a vertically 

inhomogeneous model, the physical parameter of the q-th layer can be written as 

                                                  𝑝𝑞(𝑧) = ∑ 𝐷𝑙
(𝑞)𝑁𝑞

(𝑝)

𝑖=1
Ψ(𝑧)                                                    (20) 

where the number of unknowns including the layer-boundaries is also given by 

                                            M = ∑ (𝑁𝑥
(𝑞)𝑝

𝑞=1 𝑁𝑦
(𝑞)

+ 𝑁𝑞
(𝑝)

) + 1                                          (21) 

Also, 𝑙 = 𝐿𝑞 + 𝑖,   𝐿𝑞 is the initial index in the q-th layer. Assuming lateral inhomogeneity in 

each layer, the series expansion-based discretization of the physical parameter is given as  

                                       𝑝𝑞(𝑥, 𝑦) = ∑ ∑ 𝐷𝑙
(𝑞)𝑁𝑝,𝑦

(𝑞)

𝑗=1

𝑁𝑝,𝑥
(𝑞)

𝑖=1
Ψ𝑖(𝑥)Ψ𝑗(𝑦)                                     (22) 

Where 𝐷𝑙
(𝑞)

 represent the expansion coefficients, 𝑙 = 𝐿𝑞 + 𝑖 + (𝑗 − 1) ∗ 𝑁𝑥, 𝐿𝑞 is the initial 

index required in the q-th layer. The number of unknowns for a given layer-boundary has been 
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broadened with 𝑁𝑝,𝑥
(𝑞)

𝑁𝑝,𝑦
(𝑞)

 in comparison to the layer-wise homogeneous model, for  the P-

layered model,  

                                        M = ∑ (𝑁𝑥
(𝑞)𝑝

𝑞=1 𝑁𝑦
(𝑞)

+ 𝑁𝑝,𝑥
(𝑞)

𝑁𝑝,𝑦
(𝑞)

) + 1                                      (23) 

Model parameterization through series expansion increases the overdetermination ratio in 

geophysical inversion. Comparably, a four-layered structural boundary and its physical 

parameters approximated by fifth-degree polynomials can be defined by M=4*(5*5+5*5) 

+1=201 number of expansion coefficients while the number of unknowns of underdetermined 

problems is typically ~106. Thus, the choice of a discretization procedure has the potential to 

improve the results of inverse modeling. For vertically and laterally inhomogeneous model, a 

standard model which combines vertical and lateral inhomogeneity is considered. A 

discretization of the physical parameters can be given by  

                             𝑝𝑞(𝑥, 𝑦, 𝑧) = ∑ ∑ ∑ 𝐵𝑙
(𝑞)𝑁𝑝,𝑧

(𝑞)

𝑘=1

𝑁𝑝,𝑥
(𝑞)

𝑖=1

𝑁𝑝,𝑥
(𝑞)

𝑖=1
Ψ𝑖(𝑥)Ψ𝑗(𝑦)Ψ𝑘(𝑧)                        (24) 

Where 𝑙 = 𝐿𝑞 + 𝑖 + (𝑗 − 1) ∗ 𝑁𝑝,𝑥
(𝑞)

+ (𝑘 − 1) ∗ 𝑁𝑝,𝑥
(𝑞)

∗ 𝑁𝑝,𝑦
(𝑞)

 ,  𝐿𝑞 is the initial index required in 

the q-th layer. The number of unknowns for a given layer-boundary has been broadened with 

𝑁𝑝,𝑥
(𝑞)

𝑁𝑝,𝑦
(𝑞)

𝑁𝑝,𝑧
(𝑞)

  in comparison to the layer-wise homogeneous model, thus, the P-layered model 

can be obtained from 

                                     M = ∑ (𝑁𝑥
(𝑞)𝑝

𝑞=1 𝑁𝑦
(𝑞)

+ 𝑁𝑝,𝑥
(𝑞)

𝑁𝑝,𝑦
(𝑞)

𝑁𝑝,𝑧
(𝑞)

) + 1                                 (25) 

The choice of discretization procedure is essential in inverse modeling. Inversion algorithms 

used for the discretization of 3- D structures are greatly overdetermined and does not include 

additional subjective conditions. The suggested algorithm does allow to integrate a priori 

information into the inversion method as well as keeping the computing procedures, and can be 

applied to the 3-D inversion of measurement data of any geophysical surveying method. 

2.2.2 Some Applications In Near Surface Geophysics 

Geophysical method development in robust inversion at the Department of Geophysics, 

University of Miskolc, largely depends on the processing and evaluation of data measured on 

complex (laterally and vertically inhomogeneous) geological structures. It involves using series 

expansion discretization where the expansion coefficients are defined in an inversion process. 

The main advantage of this method is that a suitable resolution can be realized by introducing 

a relatively small number of expansion coefficients so that the task leads to an overdetermined 

inverse problem. The concept of series expansion based inversion has been used in numerous 

fields of geophysics.  A general solution of the method was illustrated by Turai and Dobróka 
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2001. An application of series expansion based inversion in borehole geophysics to solve a non-

linear well-logging inverse problem by Simulated Annealing as a global optimization method 

was shown by Szabó 2004. Dobróka M. and Szabo N.P 2011 further processed borehole 

geophysical data using this method, where the depth-dependent physical parameters were 

written as series expansion and the series expansion coefficients defined within the framework 

of the inversion process. An original method was presented for the processing of induced 

polarization (IP) data using the series expansion inversion by Turai et al. (2010), known as the 

TAU transformation.  A monotonously decreasing apparent polarizability curve observable in 

the time domain can be described by Fredholm type integral equation                                                                

                                             𝜂𝑎(𝑡) = ∫ 𝑤(𝜏) exp(− 𝑡/𝜏) 𝑑𝜏
∞

0
                                            (26) 

Applying series expansion, the time constant spectrum w(τ), which is a continuous real-valued 

function, was estimated with accuracy from a finite number of measurement data through 

discretization. The time constant spectrum was written in the form of series expansion as 

                                                       𝑤(𝜏) = ∑ 𝐵𝑞Փ𝑞(𝜏)𝑄
𝑞=1                                                  (27) 

where Փq is the q-th basis function and Bq is the q-th expansion coefficient. Since the basis 

functions are a priori given, the extraction of the time constant spectrum reduced to the 

determination of unknown expansion coefficients. Defining TAU transformation as an inverse 

problem, the vector of series expansion coefficients  𝐵𝑞 became the unknown model vector, and 

the forward problem was solved by substituting the discretized spectrum (equation 27) into the 

response function (equation 26)  to give a connection at measured time tk  as 

 𝜂(𝑡𝑘) = 𝜂𝑘
𝑐𝑎𝑙𝑐 = ∫ ∑ 𝐵𝑞Φ𝑞(𝜏) exp (−

𝑡𝑘

𝜏
)𝑑𝜏 = ∑ 𝐵𝑞

𝑄
𝑞=1

𝑄
𝑞=1

∞

0
∫ Φ𝑞(𝜏) exp (−

𝑡𝑘

𝜏
)𝑑𝜏

∞

0
     (28) 

By introducing the following notation                                                          

                                              𝑆𝑘𝑞 = ∫ Φ𝑞(𝜏) exp (−
𝑡𝑘

𝜏
)𝑑𝜏

∞

0
                                                (29) 

the calculated data were generated by the expression 

                                                     ,
1





Q

q

kqq

calc

k  SBη                                                               (30) 

which in matrix form is                                                                

                                                       𝜂 𝑐𝑎𝑙𝑐 = 𝑆�⃗�                                                                       (31) 
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The TAU transformation was successful in delineating municipal waste contaminates. Dobroka 

et al., 2013 proposed a similar approximate series expansion based inversion method for 

imaging Magneto Telluric (MT) data measured above 2-D geological structures. In discretizing 

the model parameters, a series expansion formula was used with interval-wise constant 

functions or Chebishev polynomials as base functions. The expansion coefficients served as the 

unknown parameters of the inverse problem, and the imaging algorithm was restricted to layer-

wise homogeneous geological models with laterally changing boundaries. Writing the (n-th) 

thickness function in the form of a series expansion gave 

                                        11)(
1

-N,...,=n          , B  = h qnq

Q

=q

n x                            (32) 

where 
)x( 

q is the q-th base function and nqB  is the q-th expansion coefficient of the n-th layer, 

x denotes the lateral coordinate, N is the number of layers. Here, Q is a priori given number of the 

base functions taken into account in the truncated series expansion. This number depended on the 

variability of the model whilst the choice of the base functions depended on the nature of the 

geological model. The applied Chebishev polynomials used as the basis function for 

discretization was given as 

                               )x(T)x( qq                                                                (33) 

Using Eötvös torsion and gravity measurements, deflections of the vertical and digital terrain 

model data by series expansion inversion based reconstruction of a three-dimensional gravity 

potential was presented by Dobróka and Völgyesi (2010). The Fourier transform was also 

handled as a series expansion based inverse problem by Dobróka and Vass (2006). In addition 

to the above, an efficient method for the series expansion based inversion of geoelectric data 

measured on two-dimensional geological structures was shown by Gyulai et al. 2010.  

2.3 Fourier Transform as Series Expansion-Based Inversion  

The application of series expansion based Inversion to Fourier data processing was proposed 

by Dobroka et al., 2012, by introducing the LSQ-FT method. This procedure involves series 

expansion based discretization using Hermite functions as basis functions. Taking advantage of 

the beneficial properties of Hermite-functions, that they are the eigenfunctions of the inverse 

Fourier transformation, the elements of the Jacobian matrix were calculated quickly and easily 

without integration.  The series expansion coefficients are given by the solution of a linear 

inverse problem. In this Thesis, the Hermite functions based method will be abbreviated as H-

LSQ-FT method. The entire process was also robustified using the IRLS method by the 
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application of Steiner weights, thereby enabling an internal iterative recalculation of the 

weights. This resulted in a very efficient, robust, and resistant inversion procedure with a higher 

noise reduction capability. The integration of the IRLS algorithm with Steiner weights is a very 

useful procedure since the scale parameter of the weights can be derived from the real statistics 

of the data set in the framework of the Most Frequent Value method (Steiner F. 1988, 1997). In 

the following this Hermite functions based robust method will be abbreviated as H-IRLS-FT 

method. The procedure was further improved for noise reduction by Dobroka et al., 2017, where 

it was successfully used to reduce magnetic data to the pole. 

2.3.1 1D H-LSQ-FT method  

Data conversion from the time domain to the frequency domain can be established using a 

Fourier transform. The connection enhances data interpretation since certain features are 

improved in one data format than the other. For the one-dimensional case, the Fourier transform 

is defined as 

                                               





 dte)t(u)(U

tj




2

1 ,                                                         (34) 

where t  denotes the time,   is the angular frequency and j is the imaginary unit. The frequency 

spectrum )(U   is the Fourier transform of a real-valued time function )t(u , and it is generally 

a complex-valued continuous function. Thus, the Fourier transform provides the frequency 

domain representation of a phenomenon investigated by the measurement of some quantity in 

the time domain. The inverse Fourier transform ensures a return from the frequency domain to 

the time domain. 

                                                




 



de)(U)t(u

tj

2

1                                                         (35) 

In defining the Fourier transform as an inverse problem, the frequency spectrum )(U  should 

be described by a discrete parametric model. In order to satisfy this requirement, we assumed 

that )(U   is approximated with sufficient accuracy by using a finite series expansion 

                                                     



M

i

ii )(B)(U
1

 ,                                                           (36) 

Where the parameter
iB  is a complex-valued expansion coefficient and 

i is a member of an 

accordingly chosen set of real-valued basis functions. Using the terminology of (discrete) 
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inverse problem theory, the theoretical values of time-domain data (forward problem) can be 

given by the inverse Fourier transform 

                                            




 



de)(Uu)t(u ktjtheor

kk

theor

2

1 , 

where 
kt  is the k -th sampling time. Inserting the expression given in Eq. (1) one finds that 

                              






de)(Bde)(Bu kk tj

M

i

ii
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theor
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2
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Introducing the notation 

                                                       




 



de)(G ktj

ii,k
2

1 ,                                               (37) 

where 
i,kG  is an element of the Jacobian matrix of the size N-by-M. The Jacobian matrix is the 

inverse Fourier transform of the 
i basis function. Parameterization of the model is achieved 

by introducing a special feature of the Hermite functions, thus, by making them the 

eigenfunctions of the forward Fourier transform as  

                                                )(H)j()t(H )(

n

n)(

n 00
F ,                                                       (38) 

and respectively for the inverse Fourier transform 

                                                )t(H)j()(H )(

n

n)(

n

00
-1F ,                                                       (39) 

The Hermite functions were modified by scaling because, in geophysical applications, the 

frequency covers wider ranges. The theoretical values can, therefore, be written in the linear 

form as 

                                                    



M

i

i,ki

theor

k GBu
1

.                                                                (40) 

2.3.2 2D H-LSQ-FT method  

The 2D Fourier transform of a function u(x,y) can be calculated by the integral 

                           









 dydxeyxuU
yxj

yx
yx )(

),(
2

1
),(




 ,                               (41) 

its inverse is given by the formula 

                         
yx

yxj

yx ddeUyxu yx 
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2

1
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  ,                              (42) 
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where x, y are the spatial coordinates, U(ωx,ωy) is the 2D spatial-frequency spectrum and ωx, 

ωy indicate the spatial-angular frequencies. The discretization of the continuous spectrum can 

be done through series expansion, 

                               
 


N

1n

M

1m

yxm,nm,nyx ),(B),(U  ,                                           (43) 

where Ψn,m(ωx,ωy) are frequency-dependent basis functions, Bn,m are the expansion coefficients 

that represent the model parameters of the inverse problem. The basis function system should 

be square-integrable in the interval (-∞, ∞). The Hermite functions meet this criterion with an 

additional advantage. Dobróka et al. (2015) showed that the elements of the Jacobian matrix 

could be considered as the inverse Fourier transform of the basis function system. Therefore, 

they can be calculated more easily if the basis functions are chosen from the eigenfunctions of 

the inverse Fourier transformation. By introducing 'α' as a scale parameter, it can be shown, that 

the normed and scaled Hermite functions are given by  

                                  ,

)2(!n

),(he
),(H

n

xn
2

xn

2
x












                                                 (44) 
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),(he
),(H

m

ym
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                                                 (45) 

and are the eigenfunctions of the inverse Fourier transformation. The Jacobian matrix of the 

inverse problem can be written as 

                                 .
)( )0()0(

4

,

, 
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n

mn
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G                                      (46) 

Here 
)0(

m

)0(

n H,H denote the non-scaled Hermite functions and provides a fast solution to the 

forward problem. 

                                        
mn

lk

N

n

M

m

mnlk GByxu ,

,

1 1

,),( 
 

 .                                             (47) 

2.3.3 The robust Inversion algorithm used in H-IRLS-FT 

The Gaussian Least Squares Method (LSQ), which minimizes the 𝐿2-norm of the deviation 

vector between the observed and calculated data is normally applied when the data noise 
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follows the regular distribution. Unfortunately, most geophysical data contains irregular noise 

with randomly occurring outliers making the least-squares method (LSQ) less effective for 

processing. Dobroka et al. 2012 emphasized the possibilities of obtaining a good result in an 

inverse problem solution when the data is weighted. To develop a robust algorithm, the 

weighted norm of the deviation vector was minimized using Cauchy weights, which were 

further modified to Cauchy-Steiner weights. The minimized weighted norm is given as 

                                                            



N

k

kkw ewE
1

2                                                           (48) 

Where ′𝑤𝑘’ is the Cauchy weights, given by 

                                                            
22

2

k

k
e

w





  

Applying Steiner’s Most Frequent Value method (MFV), the scale parameter 2 was 

determined from the data set in an internal iteration loop. By experience, a stop criterion was 

defined from a fixed number of iterations. After this, the Cauchy weights were calculated using 

the Steiner's scale parameter. The so-called Cauchy-Steiner weights at the last step of the 

internal iterations are given by 

                                                           
22

2

k

k
e

w





 ,         (49) 

where
2

1j  the Steiner’s scale factor called dihesion is determined iteratively. 

In practice, the misfit function is non-quadratic in the case of Cauchy-Steiner weights (because 

ke contains the unknown expansion coefficients) and so the inverse problem is nonlinear which 

can be solved again by applying the method of the Iteratively Reweighted Least Squares 

(Scales, 1988). In the framework of this algorithm, a 0-th order solution )(B 0


 is derived by using 

the non-weighted LSQ method and the weights are calculated as 

                                                         
202

2
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k
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k
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k uue 00
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k GBu
1

00  and the expansion coefficients are given by the 

LSQ method. In the first iteration, the misfit function 
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is minimized resulting in the linear set of normal equations 

                                  measured)(T)()(T uB


010
WGGWG    

The minimization of the new misfit function 

                                                            



N

1k

2)2(

k

)1(

k

)2(

w ewE  

gives )(B 2


which serves again for the calculation of .w )(

k

2  This procedure is repeated giving the 

typical j-th iteration step 

                                                  measured)j(T)j()j(T uB


11 
 WGGWG         (50) 

with the )j( 1
W  weighting matrix 

                                                             )j(

k

)j(

kk wW 11 
                                                       (51) 

Each step of these iterations contains an internal loop for the determination of the Steiner’s 

scale parameter which is repeated until a proper stop criterion is met. 

2.4 Some Features and Problems of Inversion-Based Fourier Transform 

The basic concept of the H-IRLS-FT method can be summarized into four distinct steps 

which are the formulation of Fourier transformation as an over-determined inverse problem:  

- discretization by series expansion using Hermite functions as basis functions, 

- calculation of the Jacobi matrix using Hermite functions as the Eigenfunctions of 

the Fourier transform and  

- robustification of the entire process by IRLS Method using Steiner weights.  

The use of Hermite function as a basis function of discretization is important for the method 

development because they are orthonormal and square-integrable between the interval -∞ to ∞. 

In geophysical applications, the frequencies cover wider ranges. Hence, the Hermite functions 

had to be modified by scaling. This necessitated the introduction of a scale parameters 'α' and 

'β' into equation (44) and (45) above. Unfortunately, the value of the scale parameter is inserted 

into the algorithm from practical experience, which is problematic, making it difficult to 

assume. There is a real need to exclude this problem either  

a.) by defining a new method (with different discretization) or  

b.) improve the H-LSQ-FT or H-IRLS-FT procedure giving the optimal values of 

the scale parameters. 
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For instance, other useful functions with previous successful applications in series expansion 

based discretization such as power functions or Legendre polynomials may be considered for 

further development. Legendre polynomials have been used in interval inversion of well log 

data (Dobroka et al., 2016, Szabó et al, 2018) to give accurate estimates to the series expansion 

coefficients. It is well known that the choice of a better basis function affects the stability of the 

inversion procedure; hence, other alternatives can be tested for the inversion based FT method.  

An iteratively derived scale parameter has the potential to improve the efficiency of the 

algorithm and the entire output of the H-IRLS-FT method. 

In spite of the successes achieved by the H-IRLS-FT algorithm in equidistant geophysical data 

processing, specifically noise reduction and outlier suppression,  

c.) the theory and algorithm can further be improved for processing non-equidistant 

(randomly measured) data.  

Recent developments in random walk field data acquisition in geophysics have 

increased the need for robust processing methods like the H-IRLS-FT. The improvement in 

geophysical data acquisition tools coupled with higher digitization and reduction in tool sizes 

enable easy navigation in the field of survey. Also, the development of advanced survey 

equipment which incorporates a global positioning system (GPS) facilitates random-walk data 

acquisition in recent times. Traditional survey designs employ equidistant measurement on a 

regular grid. Unfortunately, measurements are sometimes taken out of the grid due to several 

obstacles encountered in the field of survey. Inaccessible sample locations are caused by natural 

(such as caves) or man-made (buildings) reasons which distorts already planned regular survey 

designs. This has necessitated the development of methods for the effective processing of 

datasets taken in a non-equidistant grid (random geometry). The above a.), b.) and c.) 

subsections denote the main directions of the research work presented in this Thesis.  
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Chapter 3 

NEW LEGENDRE POLYNOMIAL-BASED FT METHODS: L-LSQ-FT, L-IRLS-FT 

3.1  Legendre polynomials as basis functions 

Legendre polynomials are a system of complete orthogonal polynomials with numerous 

applications in science and engineering fields of study. Of interest to this study is its physical 

and numerical application in geophysics. They are defined as orthogonal thus, if 𝑃𝑛(𝑥) is a 

polynomial of degree ‘n’, then  

                                                             ∫ 𝑃𝑚(𝑥)𝑃𝑛(𝑥)𝑑𝑥 = 0
1

−1
               if n≠m (52) 

Another distinguished property of Legendre polynomial is its definite parity, in that, they are 

symmetric or asymmetric given that  

                                                             𝑃𝑛(−𝑥) = (−1)𝑛𝑃𝑛(𝑥)                                            (53)     

These properties make it convenient when Legendre polynomials are used in series expansion 

to approximate a function in the interval (-1,1). Also, the Legendre differential equation and the 

orthogonality property are independent of scaling. The Legendre differential equation is given 

as  

                                                         (1 − 𝑥2)
𝑑2𝑦

𝑑𝑥2 −
2𝑥𝑑𝑦

𝑑𝑥
+n(n+1) y=0                       (54) 

where n>0, ׀x׀ <1, or equivalently  

                                                        
𝑑

𝑑𝑥
[(1 − 𝑥2)

𝑑𝑦

𝑑𝑥
] + 𝑛(𝑛 + 1)𝑦 = 0                               (55) 

The solution of the above equations gives the Legendre functions of order ‘n’ with a general 

solution expressed as 

                                                                Y=A𝑃𝑛(𝑥) + 𝐵𝑄𝑛(𝑥)                                           (56) 

Where 𝑃𝑛(𝑥) and 𝑄𝑛(𝑥) are Legendre functions of the first and second kind of order ‘n’. For 

n=1, 2, 3,……, 𝑃𝑛(𝑥) functions are referred to as Legendre polynomials and are given by the 

Rodrigue’s formula  

                                                             𝑃𝑛(𝑥) =
1

2𝑛 𝑛!

𝑑𝑛

𝑑𝑥𝑛
(𝑥2 − 1)𝑛   (57) 

DOI: 10.14750/ME.2020.008



24 
 

Below is a table showing Legendre functions of the first kind 𝑃𝑛(𝑥) for n=0, 1, 2, 3…., using 

Eq. (57). 

                              Table 1, Generated Legendre Polynomials of Order n=0 to 5.  

 

 

 

 

 

 

 

 

 

Higher order Legendre polynomials can be obtained by the recursive formula below 

                                          𝑃𝑛+1
′ (𝑥) − 𝑃𝑛−1

′ (𝑥) = (2𝑛 + 1)𝑃𝑛(x). (58) 

For n=1,2,3…., where 𝑃𝑛(1) = 1 and 𝑃𝑛(−1) = (−1)𝑛. The graphical plot of these 

polynomials up to n=5 is shown in Figure 1 below 

 

 

 

 

 

 

 

                  

                                       Figure 1; Graphical Plot of n=1,…,5 Legendre polynomials 

n                                                        Legendre polynomial 

0                                                                 𝑃0(𝑥) = 1  

1                                                             𝑃1(𝑥) = 𝑥 

2                                                      𝑃2(𝑥) =
1

2
(3𝑥2 − 1) 

3                                                  𝑃3(𝑥) =
1

2
(5𝑥3 − 3𝑥) 

4                                           𝑃4(𝑥) =
1

8
(35𝑥4 − 30𝑥2+3) 

5                                   𝑃5(𝑥) =
1

8
(63𝑥5 − 70𝑥3 − 15𝑥) 

DOI: 10.14750/ME.2020.008



25 
 

Legendre polynomials have been used in interval inversion of well log data (Dobroka et al., 

2016, Szabó N.P and Dobróka M., 2019) to give accurate estimates to the series expansion 

coefficients. It is well acknowledged that the choice of a better basis function affects the 

stability of the inversion procedure hence, in the following steps, Legendre polynomials will be 

tested for the inversion based FT method. 

3.2 The L-LSQ-FT and L-IRLS-FT algorithm in 1D 

As measured geophysical data always contain noise, the noise sensitivity of the processing 

methods is an important feature. In this chapter a new 1D robust inversion based Fourier 

transformation algorithm is introduced: the Legendre-Polynomials Least-Squares Fourier 

Transformation (L-LSQ-FT) and the Legendre-Polynomials Iteratively Reweighted Least-

Squares Fourier Transformation (L-IRLS-FT). Noise in Geophysical data has varied sources, 

which may be regular or non-regular in nature. The interference of regular noise in geophysical 

data has long been a nuisance problem for geophysicists. These noises commonly originate 

from power-line radiations, global lightning, transmitters, oscillating sources and inadequate 

data processing (Butler and Russell, 1993; Jeng et al., 2007; Bagaini, 2010). Various methods 

have been proposed to suppress both systematic and non-systematic noise in geophysical 

records which include Subtracting an estimate of the noise from the recorded data (Nyman and 

Gaiser, 1983; Butler and Russell, 1993; Jeffryes, 2002; Meunier and Bianchi, 2002; Butler and 

Russell, 2003; Saucier et al., 2006). These methods are derived under the assumption that each 

sinusoidal contaminant is stationary, thus, constant in amplitude, phase, and frequency over the 

length of the record (Butler and Russell, 2003). Unfortunately, this assumption is impractical 

because the attributes of systematic noise always drift with time for many reasons. Other 

effective methods are by using inversion techniques or implementing filters with the pattern-

based scheme (Guitton and Symes, 2003; Guitton, 2005; Haines et al., 2007). Filters employing 

pattern models are effective but they are time-consuming, and adequate pattern models are 

necessary for filter estimation (Haines et al., 2007).  

 The inversion technique-based methods require a sufficient number of regularization and 

are more applicable if data quality is good. In the field of inverse problem theory, a variety of 

numerous procedures are available for noise rejection, hence formulating the Fourier 

transformation as an inverse problem enables the use of sufficient tools to reduce noise 

sensitivity. Following the theory of Dobróka et al, 2012, the discretization of the continuous 

Fourier spectra is given in this thesis by a series expansion with Legendre polynomials as a 

square-integrable set of basis functions. By using Legendre polynomials as basis function of 
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discretization, the Fourier spectrum was adequately approximated and the expansion 

coefficients are determined by solving an overdetermined inverse problem. As deduced earlier, 

equation (37) above shows the general form of the Jacobi matrix in the case of a one-

dimensional series expansion based inverse Fourier transform. Using the general Jacobian 

matrix  

                                                       ,

1
( )

2

kj t

k n nG e d
 







  ,                                               

where ,k nG  is an element of the Jacobian matrix of the size N-by-M. The Jacobian matrix is the 

inverse Fourier transform of the n basis function. Parameterization of the model is achieved 

by introducing the Legendre polynomials (equation 57) as basis function to give, 

                                                       ,

1
( )

2

kj t

k n nG P e d
 







                                              (59) 

or in a more formal notation 

                                                        1

, ( )k n k nG P  F .                                                  (60) 

The basic idea of introducing a new inversion-based Fourier Transformation method is to 

calculate the inverse FT of eq. (59) by using a common inverse DFT procedure: 

                                                      , ( )k n k nG IDFT P  .                                                (61) 

For the sake of simplicity, the sampling should be regular in time and frequency. Note, that the 

values of the ( )nP  functions are accurate (noise-free), so the application of IDFT (or IFFT) is 

independent of the noise problem (of the data set), mentioned above. By using this procedure 

the ,k nG  elements of the Jacobi matrix can numerically be generated. At this point, the inversion 

method is to be defined. The theoretical value of the signal at a time point kt is  

,

1

( )
M

theor theor

k k n k n

i

u t u B G


   

and the k-th element of the data deviation vector is written as  

( ) ( ) (

1

.
M

meas theor meas

k k k k n kn

n

e u u u B G
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Using L2-norm, the misfit function is given as 

2 ( ) ( ) 2 ( ) 2

2

1 1 1 1

( ) ( )
N N N M

meas theor meas

k k k k n kn

k k k n

E e u u u B G
   

       
. 

The minimization of this function gives the normal equation of the Gaussian Least Squares 

method 

( )measB u
T T

G G G
 

resulting in the solution 

( )measB u
T T1

(G G) G
. 

In the knowledge of the expansion coefficients, the estimated spectrum is given as  

                                                 
1

( ) ( )
M

estimated

n n

n

U B P 


            (62) 

at any frequency in the relevant max max( , )  interval. The inversion-based Fourier 

Transformation procedure described above is referred to as Legendre Polynomial based Least 

Square FT method, abbreviated as L-LSQ-FT. As explained above, the L-LSQ-FT inversion 

algorithm development initially minimizes the L2-norm of the deviation vector between the 

observed and calculated data through the Gaussian Least Squares Method (LSQ) Method, 

which is normal for data noise following regular distribution. Unfortunately, most geophysical 

data contains irregular noise with randomly occurring outliers making the Least-Squares 

Method (LSQ) less effective for processing. An outlier is a data point that is different from the 

remaining data (Barnett and Lewis 1994). Outliers are also referred to 

as abnormalities, discordant, deviants and anomalies (Aggarwal, 2013). Whereas data noises 

are measurements that are not related to conditions within the subsurface. An outlier is a 

broader concept that includes not only errors but also discordant data that may arise from the 

natural variation within a population or process. As such, outliers often contain interesting 

and useful information about the underlying system. The consequences of not screening the 

data for outliers can be catastrophic for geophysical interpretations. The negative effects of 

outliers can be summarized into three: (1) increase in error variance and reduction in statistical 

power of data (2) decrease in normality for the cases where outliers are non-randomly 

distributed (3) model bias by corrupting the true relationship between exposure and outcome 

(Osborne and Overbay, 2004). Hence, the need to weight the data by a robust approach for a 
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better result. To develop a robust algorithm (the L-IRLS-FT), the weighted norm of the 

deviation vector was minimized using Cauchy-Steiner weights while the discretization of the 

Fourier spectrum uses Legendre polynomials as basis functions. Applying the general Jacobian 

matrix derived from the inverse Fourier transform in 1D we find as above 

                                                       1

, ( )k n k nG P  F . 

By defining the inversion method, the theoretical value of the signal at a time point kt is  

                                                        ,

1

( )
M

theor theor

k k n k n

i

u t u B G


   

and the k-th element of the data deviation vector is written as  

                                                 ( ) ( ) (

1

.
M

meas theor meas

k k k k n kn

n

e u u u B G


     

The IRLS inversion procedure applied follows Dobróka et al, 2012 as discussed earlier where 

the minimized weighted norm is given as  

                         



N

k

kkw ewE
1

2                                                             

Where kw  are the Cauchy-Steiner weights given by 

                                                           
2

2 2k

k

w
e







,          

where
2

1j  the Steiner’s scale factor is determined iteratively. From earlier discussions, the 

misfit function is non-quadratic in the case of Cauchy-Steiner weights making the inverse 

problem nonlinear which can be solved by applying the method of the Iteratively Reweighted 

Least Squares (Scales, 1988). In the first iteration, the misfit function 

                                                          (0) 2

1

N

w k

k

E e


  

is minimized (Gaussian Least Squares) resulting in the linear set of normal equations 

                                 
(0)T T measuredB uG G G  giving  

(0) 1( )T T measuredB u G G G .  

The data deviation is  
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(0) ( (0)

1

.
M

meas

k k n kn

n

e u B G


 
 

 resulting in the weights 

2
(0)

2 (0) 2( )
k

k

w
e







 

and the new misfit function 

(1) (0) (1) 2

1

( )
N

w k k

k

E w e



 

where  

(1) ( (1)

1

.
M

meas

k k n kn

n

e u B G


   

The minimization of (1)

wE  results in a weighted least squares problem with the linear set of the 

normal equation 

measured)(T)()(T uB


010
WGGWG    

where the (0)
W  weighting matrix (independent of (1)B ) is of the diagonal form (0) (0)

kk kW w . 

Solving the normal equation one finds 

(1) (0) 1 (0)( )T T measuredB u G W G G W  

with  

(1) (1)

1

M

k i ki

i

u B G


 ,          (1) (1)measured

k k ke u u  ,          
2

(1)

2 (1) 2( )
k

k

w
e







. 

and so on, till the proper stop criterion is met. The described inversion-based Fourier 

Transformation procedure above is called Legendre Polynomial based Iteratively- 

Reweighted Least Square FT method, abbreviated as L-IRLS-FT. 

3.2.1 Numerical testing in 1D 

A time-domain signal (Figure 2) was created to test the noise reduction capability of the newly 

developed method, L-LSQ-FT and the traditional DFT in one dimension. The noiseless time 

function of the test data can be described by the formula below 

                                             )sin()(     tettu t                                                (64) 
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where the Greek letters represent the parameters of the signal. Specified fixed values for the 

signal parameters as follows: 91.738 , 2 , 20 ,  40 , 4/  .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2; Calculated noise-free waveform 

 

The noise-free waveform was sampled at regular intervals of 0.005 (sec) measurement points 

ranging over the time interval of [-1, 1] and processed using the traditional DFT method to give 

both the real and imaginary parts of the noise-free Fourier spectrum (Figure 3). The same 

noiseless waveform was also processed using the L-LSQ-FT method. The resultant processed 

signal is shown in Figure 4. The L-LSQ-FT spectrum was calculated using Legendre 

polynomials of the (maximal) order of M=300. For numeric reasons, the calculated Fourier 

spectra were made on the data set transformed to [-1,1] in both x and y coordinates resulting in 

an appropriate scale in the wavenumber domain. Both the traditional DFT and the L-LSQ-FT 

gave similar real and imaginary parts for the Fourier transformed spectrum. This demonstrates 

the effectiveness of both methods in processing noise-free data. 

Following the successful application of both methods to the noise-free signal, Gaussian and 

Cauchy noise were introduced into the noise-free signal (Figure 2) for processing. Gaussian 

noise is a statistical noise having a probability distribution function equal to that of the normal 

distribution, which is also known as the Gaussian distribution. In geophysical applications, this 

type of noise distribution is occasionally encountered in the data processing. Its distribution is 
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symmetric and completely characterized by the Mean and Variance of the data. The Gaussian 

noisy signal with 0 mean and 0.01 variance is given in Figure 5.  

 

 

 

 

 

 

 

 

 

Figure 3; Processed DFT spectrum of the noise-free Morlet waveform 

           

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4; Processed L-LSQ-FT spectrum of the noise-free Morlet waveform 

 

Random noise, on the other hand, is noise distributions in data that do not follow a 

regular distribution across a survey area. This type of noise is mostly introduced into survey 

data from external sources such as data acquisition or survey designs and equipment limitations. 
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They are inherent in geophysical data and are not related to the subsurface body of interest. 

Random noise reduction is a critical step to improve the signal to noise ratio in geophysical 

applications with several methods developed over the years to achieve this purpose (Liu et, al. 

2006, Al-Dossary and Marfurt 2007, Liu, Liu and Wang 2009). This includes the development 

of filters using various forms of transforms such as Wavelet Transform (Deighan and Watts 

1997), S-Transform (Askari and Siahkooli 2008) and Fourier Transform (Dobroka et, al. 2012). 

Failure to adequately suppress random noise affects the quality of processed data and 

interpretation.  

 

 

Figure 5; The generated noisy signal with Gaussian noise 

Random noise following Cauchy distribution was added to the Morlet waveform to 

produce a noisy signal (Figure 6) for processing. To demonstrate the noise reduction capability 

of the two methods, the Gaussian noisy signal (Figure 5) was processed with the traditional 

DFT and the L-LSQ-FT methods. The resultant transformed spectra in the real and imaginary 

form are shown in Figures 7 and 8 for the DFT and L-LSQ-FT respectively. We further 

processed the Cauchy noisy signal (Figure 6) with both methods to give the resultant 

transformed spectra for DFT and the L-LSQ-FT methods in Figures 9 and 10 respectively. The 

output signals show a considerable suppression of Gaussian and Cauchy noise by the L-LSQ-

FT method compared to the traditional DFT method. For the processed Cauchy noisy signal, a 

comparison between the real and imaginary spectrum as produced from the traditional DFT 

(Figure 9) and the L-LSQ-FT (Figure 10) shows not much improvement in output Fourier 
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spectra in both methods. Although the L-LSQ-FT algorithm was able to reject a substantial 

amount of the Cauchy noise, it still has some amount of noise at its extreme ends.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6; The generated noisy signal with Cauchy noise 

 

For quantitative characterization of the results, we introduce the RMS distance between 

(a) and (b) data sets (for example noisy and noiseless) in the time domain (data distance)  

                                                
2

( ) ( )

1

1
( ) ( ) ,

N
a b

RMS k k

k

d u t u t
N 

   

as well as the frequency domain (model or spectra distance) 

             
2 2

( ) ( ) ( ) ( )

1

1
Re ( ) ( ) Im ( ) ( ) .

N
a b a b

RMS k k k k

k

D U f U f U f U f
N 

           

In the case of the Gaussian noise, the distance between the noisy and noiseless data sets, d = 

0.1032. The model or spectra distance between the DFT spectrum (Figure 7) of the noisy 

(contaminated with Gaussian noise) and the noiseless data sets gave D = 1.03*10−2.  Figure 8 

represents sufficient improvement characterized by the spectra distance between the noiseless 

and the noisy (given by L-LSQ-FT) spectra: D = 8.2*10−3. Similarly, the DFT gave a spectra 

distance D=4.16*10−2 for spectrum produced from the noisy Cauchy signal whilst the L-LSQ-

FT gave a spectra distance: D=2.43*10−2. From the above analyses, a higher noise reduction 

capability was exhibited by the L-LSQ-FT method compared to the traditional DFT method. 
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The results demonstrate the outlier and random noise sensitivity of the DFT and to some extent, 

the Least Squares Methods, hence the need to define a more robust method for outliers and 

random noise suppression. We, therefore, introduce the L-IRLS-FT Method.   

 

 

 

 

 

 

 

                   

Figure 7; Processed DFT spectrum of the Gaussian noisy signal (D=1.03*10−2) 

 

 

 

 

 

 

 

 

 

 

 

           Figure 8; Processed L-LSQ-FT spectrum of the Gaussian noisy signal (D=8.2*10−2) 
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Figure 9, Processed DFT spectrum of the Cauchy noisy signal (D=4.16*10−2) 

 

 

                             

 

 

                                         

                                         

 

 

 

 

 

Figure 10, Processed L-LSQ-FT spectrum of the Cauchy noisy signal (D=2.43*10−2) 
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The same noiseless waveform as shown in Figure 2 above was processed using the L-IRLS-FT 

method. The resultant processed signal is shown in Figure 11. The L-IRLS-FT spectrum was 

calculated using Legendre polynomials of the (maximal) order of M=300. For numeric reasons, 

the calculated Fourier spectra were made on the data set transformed to [-1,1] in both x and y 

coordinates (as in the case of the L-LSQ-FT) resulting in an appropriate scale in the 

wavenumber domain.  A comparison of the real and imaginary spectrum of the L-IRLS-FT 

processed noise-free signal (Figure 11) to the output signals from the traditional DFT and L-

LSQ-FT (Figures 3 and 4 above) shows a very good similarity, indicating that the L-IRLS-FT 

algorithm was efficient in processing the noise-free signal. To test the noise reduction capability 

of the L-IRLS-FT, the Gaussian and Cauchy noisy signals (Figures 5 and 6) were this time 

processed with the L-IRLS-FT algorithm. For the Gaussian noisy signal, the output processed 

Fourier spectrum for DFT and L-IRLS-FT are shown in Figures 12 and 13 respectively. Also, 

the output processed Fourier spectrum for DFT and L-IRLS-FT for the Cauchy noisy signal are 

shown by Figures 14 and 15 below. 

 

 

                   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11; Processed L-IRLS-FT spectrum of the noise-free Morlet waveform 
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Figure 12; Processed DFT spectrum of the Gaussian noisy signal (D=4.1*10−3)                

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13; Processed L-IRLS-FT spectrum of the Gaussian noisy signal (D=2.6*10−3) 
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Figure 14; Processed DFT spectrum of the Cauchy noisy signal (D=4.16*10−2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         Figure 15; Processed L-IRLS-FT spectrum of the Cauchy noisy signal (D=1.32*10−2) 
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From the above output signals, the newly developed L-IRLS-FT algorithm was more effective 

in reducing the Gaussian and Cauchy noise component of the noisy signal compared to the 

traditional DFT. In the case of Cauchy noise, the DFT real and imaginary parts of the spectrum 

(Figure 14) were noisier with a lot of spikes. This goes a long way to emphasize the limitation 

of the traditional DFT in eliminating randomly occurring outliers and recursive random noise 

from a signal. To analytically characterize the results, we applied the RMS distance between 

two data sets (for example noisy and noiseless) in the frequency domain as well as the model 

or spectra distance. For processed Gaussian noisy dataset, the model or spectra distance 

between the DFT spectrum (Figure 12) of the noisy (contaminated with Gaussian noise) and 

the noiseless data sets is D = 4.1*10−3.  Figure 13 represents sufficient improvement 

characterized by the spectra distance between the noiseless and the noisy (given by L-IRLS-

FT) spectra: D = 2.6*10−3. Likewise, the DFT gave a spectra distance D=4.16*10−2 for 

spectrum produced from the noisy Cauchy signal whilst the L-IRLS-FT gave a spectra distance 

of D=1.32*10−2. From the above analyses, the L-IRLS-FT method compared to the traditional 

DFT method showed a higher noise reduction capability when both regular and irregular noise 

was added to the Morlet waveform for processing. The results fully demonstrate the outlier and 

random noise sensitivity of the traditional DFT method. Hence, we propose a new method, the 

L-IRLS-FT which is robust and resistant enough to suppress randomly occurring data noise. 

Based on the successful application of the L-LSQ-FT and the L-IRLS-FT, it was necessary to 

compare the results to that of the original H-LSQ-FT and H-IRLS-FT which forms the basis of 

the inverse Fourier transform method development. To do that, we first processed the same 

noise-free Morlet waveform (Figure 2) with the H-LSQ-FT and H-IRLS-FT. The real and 

imaginary parts of the processed spectrum are given in Figures 16 and 17 respectively. Equally, 

a comparison to the DFT processed spectrum (Figure 3) shows that the H-LSQ-FT and H-IRLS-

FT were efficient in processing the noise-free signal.  

We further processed the Gaussian and Cauchy noisy signals (Figures 5 and 6) with the 

H-LSQ-FT and the H-IRLS-FT to give the resultant spectrum for processed Gaussian and 

Cauchy noisy signal in Figures 18 and 19 respectively for the H-LSQ-FT. Also, the output 

processed Fourier spectrum for H-IRLS-FT for the Gaussian and Cauchy noisy signals are 

shown in Figures 20 and 21 below. 
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Figure 16; Processed H-LSQ-FT spectrum of the noise-free Morlet waveform 

 

 

 

 

 

 

 

 

 

 

 

Figure 17; Processed H-IRLS-FT spectrum of the noise-free Morlet waveform 
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Figure 18; Processed H-LSQ-FT spectrum of the Gaussian noisy signal (D=6.2*10−3) 

 

 

 

 

 

 

 

 

 

 

 

Figure 19; Processed H-LSQ-FT spectrum of the Cauchy noisy signal (D=1.23*10−2) 
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Figure 20; Processed H-IRLS-FT spectrum of the Gaussian noisy signal (D=6.5*10−3) 

 

 

 

 

 

 

 

 

 

 

Figure 21; Processed H-IRLS-FT spectrum of the Cauchy noisy signal (D=6.8*10−3) 

 

 

DOI: 10.14750/ME.2020.008



43 
 

To analytically characterize and compare the results of the newly developed Legendre 

polynomial bases Fourier transformation and the existing Hermite-based Fourier 

transformation, we applied the RMS distance between two data sets in the frequency domain 

as well as the model or spectra distance. Table 2 shows the calculated spectra distances after 

various noise was introduced into the noise-free Morlet waveform and processed. It was 

observed that the Hermite based inverse Fourier transformation was more efficient in its Least 

Square and iteratively reweighted form than the Legendre polynomial bases Fourier 

transformation, especially in the suppression of Cauchy noise. The H-IRLS-FT gave a spectra 

distance of 6.8*10−3 when random Cauchy noise was added to the data while the L-IRLS-FT 

quantified the spectra distance as 1.32*10−2. This is so because the applied Hermite functions 

are the Eigenfunctions of the inverse Fourier transform while the Legendre polynomials are 

not. Comparatively, the newly developed L-LSQ-FT and L-IRLS-FT can be considered as a 

better alternative to the traditional DFT as demonstrated above but complementary support to 

the original H-LSQ-FT and H-IRLS-FT. 

Table 2. Calculated Spectra Distance for L-LSQ-FT, H-LSQ-FT, L-IRLS-FT, and H-IRLS-

FT Methods 

 CALCULATED SPECTRA DISTANCE 

APPLIED METHOD GAUSSIAN NOISE CAUCHY NOISE 

L-LSQ-FT 8.2*10−3 2.43*10−2 

H-LSQ-FT 6.2*10−3 1.23*10−2 

L-IRLS-FT 2.6*10−3 1.32*10−2 

H-IRLS-FT 6.5*10−3 6.8*10−3 
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3.3 The L-LSQ-FT and L-IRLS-FT algorithm in 2D 

To develop the L-LSQ-FT and L-IRLS-FT algorithm in 2D, the same inversion procedures in 

the one-dimensional case was followed. The general form of the Jacobi matrix in the case of 

two-dimensional series expansion based inverse Fourier transform is given as  

 

 

where 𝐺𝑛𝑚
𝑘𝑙  is an element of the Jacobian matrix of the size N-by-M. The Jacobian matrix is the 

inverse Fourier transform of the two basis functions 𝜓𝑛  and 𝜓𝑚 . Parameterization of the model 

is achieved by introducing the Legendre polynomials (equation 57) as basis functions to give, 

                 𝐺𝑛𝑚
𝑘𝑙 =

1

√2𝜋
∫ 𝑃𝑛(𝜔𝑥)𝑒

𝑗𝜔𝑥𝑥𝑘𝑑𝜔𝑥 .   
1

√2𝜋
∫ 𝑃𝑚(𝜔𝑦)𝑒

𝑗𝜔𝑦𝑦𝑙𝑑𝜔𝑦  
∞

−∞

∞

−∞
                      (67)          

 

or in a more formal notation 

                                            𝐺𝑛,𝑚
𝑘𝑙 = ℱ𝑘

−1{𝑃𝑛(𝜔)}. ℱ𝑙
−1{𝑃𝑚(𝜔)}                                           (68) 

We then introduce a new Legendre polynomial 2D inversion-based Fourier Transformation 

method to calculate the inverse FT of eq. (67) by using the frequently used 2D inverse DFT 

procedure: 

                                                  𝐺𝑛,𝑚
𝑘𝑙 = 𝐼𝐷𝐹𝑇{𝑃𝑛(𝜔)}. 𝐼𝐷𝐹𝑇{𝑃𝑚(𝜔)}                                            (69) 

By using this procedure the 𝐺𝑛,𝑚
𝑘𝑙  elements of the Jacobi matrix can numerically be generated. 

At this point, a new inversion method is to be defined. The theoretical value of the data at point 

(𝑥𝑘,𝑦𝑙) is given as  

u𝑡ℎ𝑒𝑜𝑟(𝑥𝑘, 𝑦𝑙) = 𝑢𝑠
𝑡ℎ𝑒𝑜𝑟 = ∑ ∑ 𝐵𝑛,𝑚

𝑀

𝑚=1

𝑁

𝑛=1

𝐺𝑛,𝑚
𝑘𝑙  

Which can be simplified further to  

𝑢𝑠
𝑡ℎ𝑒𝑜𝑟 = ∑𝐵𝑖𝐺𝑠,𝑖

𝐼

𝑖=1

 

 (where 𝑖 = 𝑛 + (𝑚 − 1)𝑁, 𝑠 = 𝑘 + (𝑙 − 1)𝑘) 

𝐺𝑛𝑚
𝑘𝑙 =

1

√2𝜋
∫ 𝜓𝑛(𝜔𝑥)𝑒

𝑗𝜔𝑥𝑥𝑘𝑑𝜔𝑥 .   
1

√2𝜋
∫ 𝜓𝑚(𝜔𝑦)𝑒

𝑗𝜔𝑦𝑦𝑙𝑑𝜔𝑦  

∞

−∞

∞

−∞
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The general element of the deviation vector can be given in the form 

                                      𝑒𝑠 = 𝑢𝑠
(𝑚𝑒𝑎𝑠)

− 𝑢𝑠
(𝑡ℎ𝑒𝑜𝑟)

= 𝑢𝑠
(𝑚𝑒𝑎𝑠)

− ∑ 𝐵𝑖𝐺𝑠,𝑖
𝐼
𝑖=1    

By means of L2-norm, the misfit function is given as 

𝐸2 = ∑ 𝑒𝑘
2 = ∑ (𝑢𝑘

(𝑚𝑒𝑎𝑠) − 𝑢𝑘
(𝑡ℎ𝑒𝑜𝑟)

)2 = ∑ (𝑢𝑘
(𝑚𝑒𝑎𝑠) − ∑ ∑ 𝐵𝑛,𝑚𝐺𝑛𝑚

𝑘𝑙𝑀
𝑚=1

𝑁
𝑛=1 )2𝑁

𝑘=1
𝑁
𝑘=1

𝑁
𝑘=1 . 

The minimization of this function gives the normal equation of the Gaussian Least Squares 

method 

( )measB u
T T

G G G
 

resulting in the solution 

( )measB u
T T1

(G G) G
. 

In the knowledge of the expansion coefficients, the estimated spectrum is given as  

                                              𝑈𝑒𝑠𝑡𝑖𝑚𝑠𝑡𝑒𝑑(𝜔) = ∑ ∑ 𝐵𝑛,𝑚𝑃𝑛(𝜔)𝑃𝑚(𝜔).𝑀
𝑚=1

𝑁
𝑛=1                          (70)     

The inversion-based Fourier Transformation procedure described above is referred to as 2D 

Legendre Polynomial based Least Square FT method, abbreviated as 2D L-LSQ-FT. To 

develop a robust algorithm for outlier suppression, the IRLS method was this time applied and 

the 2D Fourier frequency spectrum discretized using Legendre Polynomials. This resulted in a 

new Legendre Polynomial based 2D Iteratively Reweighted Least Square FT method, 

abbreviated as 2D L-IRLS-FT. Robust inversion techniques such as the IRLS yield good 

performance when data is drawn from a wide range of probability distributions that are largely 

unaffected by outliers or small departures from model assumptions in a given dataset. These 

methods have two distinctive aspects, in that they can effectively ignore erroneous 

measurements during inversion and are very easy to implement. As explained in the 1D case, 

the methods work by applying a diagonal weighted matrix to data residuals based on their 

statistics. The estimation of weights can be completely automatic or iterative and relies on the 

assumption that the noisy measurements are statistically insignificant. As explained earlier, the 

N-by-M Jacobian matrix for two-dimensional series expansion based inverse Fourier transform 

is given as  

 

 
𝐺𝑛𝑚

𝑘𝑙 =
1

√2𝜋
∫ 𝜓𝑛(𝜔𝑥)𝑒

𝑗𝜔𝑥𝑥𝑘𝑑𝜔𝑥 .   
1

√2𝜋
∫ 𝜓𝑚(𝜔𝑦)𝑒

𝑗𝜔𝑦𝑦𝑙𝑑𝜔𝑦  

∞

−∞

∞

−∞
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Parameterization of the model is achieved by introducing the Legendre polynomials (equation 

57) as basis function to give, 

𝐺𝑛𝑚
𝑘𝑙 =

1

√2𝜋
∫ 𝑃𝑛(𝜔𝑥)𝑒

𝑗𝜔𝑥𝑥𝑘𝑑𝜔𝑥 .   
1

√2𝜋
∫ 𝑃𝑚(𝜔𝑦)𝑒

𝑗𝜔𝑦𝑦𝑙𝑑𝜔𝑦  

∞

−∞

∞

−∞

 

or in a more formal notation 

𝐺𝑛,𝑚
𝑘𝑙 = ℱ𝑘

−1{𝑃𝑛(𝜔)}. ℱ𝑙
−1{𝑃𝑚(𝜔)} 

We then introduce a new Legendre polynomial Iteratively Reweighted Least Square inversion-

based Fourier Transformation method to calculate the 2D inverse FT of the general Jacobian 

matrix by using the frequently used 2D inverse DFT procedure: 

                                        𝐺𝑛,𝑚
𝑘𝑙 = 2𝐷 𝐼𝐷𝐹𝑇{𝑃𝑛(𝜔)}. 2𝐷 𝐼𝐷𝐹𝑇{𝑃𝑚(𝜔)}                                           (71) 

The 𝐺𝑛,𝑚
𝑘𝑙  elements of the Jacobi matrix can numerically be generated. We then define a new 

inversion method with a theoretical value of the data at point (𝑥𝑘,𝑦𝑙) given as  

u𝑡ℎ𝑒𝑜𝑟(𝑥𝑘, 𝑦𝑙) = 𝑢𝑠
𝑡ℎ𝑒𝑜𝑟 = ∑ ∑ 𝐵𝑛,𝑚

𝑀

𝑚=1

𝑁

𝑛=1

𝐺𝑛,𝑚
𝑘𝑙  

The general element of the deviation vector can be given in the form 

𝑒𝑠 = 𝑢𝑠
(𝑚𝑒𝑎𝑠)

− 𝑢𝑠
(𝑡ℎ𝑒𝑜𝑟)

= 𝑢𝑠
(𝑚𝑒𝑎𝑠)

− ∑ ∑ 𝐵𝑛,𝑚

𝑀

𝑚=1

𝑁

𝑛=1

𝐺𝑛,𝑚
𝑘𝑙  

At this stage, we introduce the IRLS algorithm which is characterized by a weight change from 

iteration to iteration and requires the minimization of the L-p norm of the deviation vector for 

which solutions of p<2 are of practical importance in geophysical applications. The applied 

weights are inversely proportional to the deviation vector between the calculated and observed 

data. As a consequence, the noisier data contribute to the solution to a less degree.  The method 

generates a nonlinear set of equations which are linearized. This assures that a linear set of 

equations is solved in each step of the iterative procedure. In the first step, the weighting matrix 

is chosen as an identity matrix and the model vector estimated as demonstrated in 1D. The 

minimized weighted norm is given as 

                                                   



N

k

kkw ewE
1

2                                                             
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Where ′𝑤𝑘’ is the Cauchy-Steiner weights given by 

                                                           
22

2

k

k
e

w





 ,          

And determined iteratively from the data. In the first iteration, the misfit function 

                                                          



N

1k

2)1(

k

)0(

k

)1(

w ewE  

is minimized resulting in the linear set of normal equations 

                                  measured)(T)()(T uB


010
WGGWG    

The minimization of the new misfit function 

                                                            



N

1k

2)2(

k

)1(

k

)2(

w ewE  

gives )(B 2


which serves again for the calculation of .w )(

k

2  This procedure is repeated giving the 

typical j-th iteration step 

                                                  measured)j(T)j()j(T uB


11 
 WGGWG  

The Legendre Polynomial based 2D Iteratively Reweighted Least Square FT method, 

abbreviated as 2D L-IRLS-FT described above, iteratively recalculates Cauchy weights and 

results in a very efficient robust inversion method (Amundsen L. 1991). The purpose of 

robustification was to reduce the influence of data outliers. 

3.3.1 Numerical testing in 2D 

In order to test the 2D L-LSQ-FT and 2D L-IRLS –FT inversion-based Fourier transform, a 

noise-free 2D data set in a rectangular test area of the size [−1,1] units in both x and y directions 

was created (Figure 22). A regular noise-free homogeneous background was generated with a 

rectangular anomaly (u = 0.7) in the center of size [−0.2, 0.2] units in both directions. The 

sampling intervals were dx = dy = 0.02 units so the number of data is N = 45*45. The 2D 

Fourier spectrum of the (noise-free) discrete data set was calculated by means of 2D DFT and 

2D L-LSQ-FT algorithms. Figures 23 and 24 show the absolute value (amplitude spectrum) 

produced by the traditional 2D DFT and the 2D L-LSQ-FT respectively. The 2D L-LSQ-FT 

spectrum was calculated using Legendre polynomials of the (maximal) order of M=45. For 

numeric reasons, the calculated Fourier spectra were made on the data set transformed to [-1,1] 
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in both x and y coordinates. Visual comparison of the two spectra shows approximately the 

same output, indicating the effectiveness of both methods in processing a noise-free dataset. 

 

 

 

 

 

 

 

 

 

 

                                      

Figure 22; Generated noise-free 2D test surface 

 

 

 

 

 

                                       

 

 

 

 

 

 

                     Figure 23; Processed 2D-DFT amplitude spectrum of the noise-free data 
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          Figure 24; Processed 2D L-LSQ-FT amplitude spectrum of the noise-free data 

  

After successfully applying both methods to the noise-free test surface, random noise 

following Gaussian- and Cauchy distribution were introduced into the noise-free test surface 

for processing. The Gaussian noisy data is shown in Figure 25 with a much rougher surface 

area. Random noise following Cauchy distribution was added to the test surface to produce 

outlier data with spikes (Figure 26). To demonstrate the noise reduction capability of the two 

methods, the Gaussian noisy data (Figure 25) was first processed with the traditional 2D DFT 

and the 2D L-LSQ-FT methods. The resultant Fourier transformed absolute value spectrums 

are shown in Figures 27 and 28 for the 2D DFT and 2D L-LSQ-FT respectively. We further 

processed the Cauchy noisy data (Figure 26) with both methods to give the resultant 

transformed Fourier spectra for 2D DFT and the 2D L-LSQ-FT methods in Figures 29 and 30 

respectively. The output spectrums undoubtedly show a considerable suppression of Gaussian 

and Cauchy noise by the 2D L-LSQ-FT method compared to the traditional 2D DFT method. 

The 2D DFT could not eliminate the introduced Gaussian and Cauchy noise as demonstrated 

by the spread of data noise in its output Fourier spectrums (Figure 27 and 29). The processed 

spectrums from the 2D L-LSQ-FT (Figures 28 and 30) show minor noise across the test area 

occurring mostly at the edges but comparatively produced much better spectrums with lesser 

noise. Thus, the 2D L-LSQ-FT algorithm was able to better suppress the Gaussian and Cauchy 

noise compared to the traditional 2D DFT.  
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Figure 25; Generated 2D noisy signal with Gaussian noise 

 

 

 

 

 

 

 

 

 

Figure 26; Generated 2D noisy signal with Cauchy noise 
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For quantitative characterization of the results, we introduce the RMS distance between (a) 

and (b) data in the space domain  

                                       
( ) ( ) 2

1 1
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( , ) ( , )  
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RMS i j i j

i j
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N  

      

in the space domain and the model distance 
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, 

( ,x yN N  and x yN N N are relevant numbers of data or space-frequency points in the 2D test 

area).  

In the case of the Gaussian noise, the distance between the noisy and noiseless data sets, d = 

0.0216. The model or spectra distance between the 2D DFT spectrum (Figure 27) of the noisy 

(contaminated with Gaussian noise) and the noiseless data sets gave D = 1.703*10−3.  Figure 

28 represents sufficient improvement characterized by the spectra distance between the 

noiseless and the noisy (given by 2D L-LSQ-FT) spectra: D = 1.037*10−3. Similarly, the 2D 

DFT gave a spectra distance D=3.414*10−3 for spectrum produced from the noisy Cauchy 

signal whilst the 2D L-LSQ-FT gave a spectra distance: D=1.336*10−3. From the above 

analyses, a higher noise reduction capability was exhibited by the 2D L-LSQ-FT method 

compared to the traditional 2D DFT method. The results demonstrate the outlier and random 

noise sensitivity of the 2D DFT and to some extent, the Least Squares Methods, hence the need 

to define a more robust method for outliers and random noise suppression. We, therefore, 

introduce the 2D L-IRLS-FT Method.   

The same noiseless test surface as shown in Figure 22 above was processed using the 2D DFT 

and the 2D L-IRLS-FT method. The resultant processed spectrum is shown in Figures 31 and 

32 respectively for the 2D DFT and the 2D L-IRLS-FT methods. The 2D L-IRLS-FT spectrum 

was calculated using Legendre polynomials of the (maximal) order of M=45 as in the case of 

the 2D LSQ-FT. For numeric reasons, the calculated Fourier spectra were made on the data set 

transformed to [-1,1] in both x and y coordinates (as in the case of the 2D L-LSQ-FT) resulting 

in an appropriate scale in the wavenumber domain. 
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Figure 27; Processed 2D DFT spectrum of the Gaussian noisy signal (D=1.703*10−3) 

 

 

 

 

 

 

 

 

  

 Figure 28; Processed 2D L-LSQ-FT spectrum of the Gaussian noisy signal (D=1.037*10−3) 
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Figure 29; Processed 2D DFT spectrum of the Cauchy noisy signal (D=3.414*10−3) 

 

 

 

 

 

 

 

                               

 

 

 Figure 30; Processed 2D L-LSQ-FT spectrum of the Cauchy noisy signal (D=1.336*10−3) 
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A comparison of the spectrum from the 2D L-IRLS-FT processed noise-free signal (Figure 31) 

to the output signals from the traditional 2D DFT (Figures 32) shows a very good similarity, 

indicating that the 2D L-IRLS-FT algorithm was efficient in processing the noise-free signal. 

To test the noise reduction capability of the 2D DFT and the 2D L-IRLS-FT, the Gaussian and 

Cauchy noisy data sets (Figures 25 and 26 above) was this time processed with the 2D DFT 

and the 2D L-IRLS-FT algorithms. For the Gaussian noisy data, the output processed Fourier 

spectrum for the 2D DFT and 2D L-IRLS-FT are shown in Figures 33 and 34 respectively. 

Also, the output processed Fourier spectrum for the 2D DFT and the 2D L-IRLS-FT for the 

Cauchy noisy data are shown by Figures 35 and 36 below. 

From the above output spectrums, the newly developed 2D L-IRLS-FT algorithm was more 

effective in reducing the Gaussian and Cauchy noise component of the noisy data sets compared 

to the traditional 2D DFT. In the case of Gaussian noise, the 2D DFT spectrum (Figure 33) was 

noisier compared to the 2D L-IRLS-FT spectrum (Figure 34), which gave an almost noise-free 

spectrum. The same was exhibited in the case of the Cauchy noisy data as the 2D L-IRLS-FT 

demonstrated higher noise reduction capability from its processed Fourier spectrum (Figure 36) 

compared to that of the 2D DFT (Figure 35). This highlighted the limitation of the traditional 

2D DFT in rejecting randomly occurring outliers.  To analytically characterize the results, we 

applied the RMS distance between two data sets in the space domain as well as the model or 

spectra distance. For the processed Gaussian noisy dataset, the model or spectra distance 

between the DFT spectrum (Figure 33) of the noisy (contaminated with Gaussian noise) and 

the noiseless DFT processed data sets is D =1.700*10−3.  Figure 34 represents sufficient 

improvement characterized by the spectra distance between the noiseless and the noisy (given 

by 2D L-IRLS-FT) spectra: D =1.231*10−3 . Likewise, the 2D DFT gave a spectra distance 

D=3.013*10−3 for spectrum produced from the noisy Cauchy data whilst the 2D L-IRLS-FT 

gave a spectra distance of D=6.759*10−4. 

From the above analyses, the 2D L-IRLS-FT method compared to the traditional 2D DFT 

method, showed a much higher noise reduction capability when both Gaussian and Cauchy 

noise were added to the test surface for processing. The results wholly validate the outlier and 

random noise sensitivity of the traditional 2D DFT method. Hence, we recommend the new 

method, the 2D L-IRLS-FT which is tough, robust and resistant enough to subdue randomly 

occurring data noise. 
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                 Figure 31; Processed 2D DFT spectrum of the noise-free test surface 

 

              Figure 32; Processed 2D L-IRLS-FT spectrum of the noise-free test surface 
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Figure 33; Processed 2D DFT spectrum of the Gaussian noisy Data (D=1.700*10−3) 

 

 

   Figure 34; processed 2D L-IRLS-FT spectrum of the Gaussian noisy Data (D=1.231*10−3) 
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Figure 35; Processed 2D DFT spectrum of the Cauchy noisy Data (D=3.413*10−3) 

                         

 

Figure 36; Processed 2D L-IRLS-FT spectrum of the Cauchy noisy Data (D=6.759*10−4) 
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Based on the successful application of the 2D L-LSQ-FT and the 2D L-IRLS-FT, it is 

required to relate the results to the original 2D H-LSQ-FT and the 2D H-IRLS-FT which forms 

the basis of the 2D inverse Fourier transformation method development. To do that, we first 

processed the same noise-free test surface (Figure 22) with the 2D H-LSQ-FT and the 2D H-

IRLS-FT. The processed spectrums are given in Figures 37 and 38 respectively for the 2D H-

LSQ-FT and the 2D H-IRLS-FT respectively. A comparison to the 2D DFT processed noise-

free spectrum (Figure 23 for the LSQ and figure 31 for the IRLS) shows that the 2D H-LSQ-

FT and 2D H-IRLS-FT were efficient in processing the noise-free data. We further processed 

the Gaussian and Cauchy noisy data sets (Figures 25 and 26) with the 2D H-LSQ-FT and the 

2D H-IRLS-FT to give the resultant spectrums for processed Gaussian and Cauchy noisy signal 

in Figures 39 and 40 respectively for the 2D H-LSQ-FT. Also, the output processed Fourier 

spectrum for 2D H-IRLS-FT for the Gaussian and Cauchy noisy data are shown in Figures 41 

and 42 below. 

 

 

 

 

 

 

 

 

  Figure 37; Processed 2D H-LSQ-FT spectrum of the noise-free Morlet waveform 
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        Figure 38; Processed 2D H-IRLS-FT spectrum of the noise-free test surface  

 

 

Figure 39; Processed 2D H-LSQ-FT spectrum of the Gaussian noisy data (D=8.6322*10−4) 
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   Figure 40; Processed 2D H-LSQ-FT spectrum of the Cauchy noisy data (D=9.147*10−4) 

  

 

Figure 41; Processed 2D H-IRLS-FT spectrum of the Gaussian noisy Data (D=8.6563*10−4) 
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    Figure 42; Processed 2D H-IRLS-FT spectrum of the Cauchy noisy Data (D=6.8676*10−4)                  

To quantitatively differentiate and relate the results of the newly developed two dimensional 

Legendre polynomial based Fourier transformation and the accepted two dimensional Hermite-

based Fourier transformation, we applied the RMS distance between two data sets in the space 

domain as well as the model or spectra distance. Table 3 shows the calculated spectra distances 

after various noise was introduced into the noise-free test data and processed. It was practical 

that the 2D Hermite based inverse Fourier transformation methods were more efficient in its 

Least Square and iteratively reweighted forms than the 2D Legendre polynomial based Fourier 

transformation. As explained in the 1D example, this is so because the applied Hermite 

functions are the Eigenfunctions of the inverse Fourier transform while the Legendre 

polynomials are not. Comparatively, the newly developed 2D L-LSQ-FT and 2D L-IRLS-FT 

can be considered as a better alternative to the traditional 2D DFT as demonstrated above but 

an additional backing to the original 2D H-LSQ-FT and the 2D H-IRLS-FT. 

In conclusion, a new robust and resistant, inversion based Fourier transformation (L-

LSQ-FT and L-IRLS-FT) is presented in 1D and 2D where the spectrum is discretized by series 

expansion using Legendre polynomials as basis functions. First, the series expansion 

coefficients are given by the solution of a linear inverse problem (L-LSQ-FT) and the elements 

of the Jacobian matrix calculated faster and easily, without integration. The procedure is 

robustified using Iteratively Reweighted Least Squares (IRLS) method with Steiner weights 
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resulting in a very efficient robust and resistant inversion procedure (L-IRLS-FT). Its 

applicability is demonstrated in 1D and 2D through the numerical testing of synthetic data. It 

was observed in the test that the Discrete Fourier Transformation (DFT) is a common data 

processing method but incorporate some level of noise in the transformation process. 

Comparatively, the newly introduced Legendre polynomial inversion-based Fourier 

transformation algorithm has a higher noise rejection capability than the traditional DFT 

Method and can be used as an alternative to the original Hermite inversion-based Fourier 

transformation. 

Table 3. Calculated Spectra Distance for 2D L-LSQ-FT, 2D H-LSQ-FT, 2D L-IRLS-FT, and 

the 2D H-IRLS-FT Methods 

 CALCULATED SPECTRA DISTANCE 

APPLIED METHOD GAUSSIAN NOISE CAUCHY NOISE 

2D L-LSQ-FT 0.001037 0.001336 

2D H-LSQ-FT 0.000863 0.000914 

2D L-IRLS-FT 0.001231 0.000676 

2D H-IRLS-FT 0.000865 0.000687 
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Chapter 4 

DEVELOPMENTS OF THE H-LSQ-FT AND H-IRLS-FT BY OPTIMIZING THE 

SCALE PARAMETERS 

 

4. 1 Method Development In 1D 

As discussed in chapter 2, the basic theory of the H-LSQ-FT method development involves 

some distinct steps which are the formulation of Fourier transformation as an over-determined 

inverse problem, discretization of the Fourier spectrum using series expansion and the 

calculation of the Jacobi matrix using Hermite functions as the Eigenfunctions of the Fourier 

transform.  The applied Hermite functions are orthonormal and square-integrable between the 

interval -∞ to ∞, hence, the need to be modified by scaling to cover specific frequencies. This 

necessitated the introduction of a scaling parameters 'α’ into equation (44) above. 

Inappropriately, the value of the scale parameter is inserted into the algorithm from practical 

experience (trial and error basis), which is problematic, making it difficult to assume. There is, 

therefore, a real need to determine 'α’ in an exact algorithm.  In this chapter, we introduce a 

meta-algorithm that improves the H-LSQ-FT procedure by giving the optimal values of the 

scale parameters. The calculated Jacobian matrix for the 1D inverse Fourier transformation is 

given by Eq. (37) 
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where 
i,kG  is an element of the Jacobian matrix of the size N-by-M. The Jacobian matrix is the 

inverse Fourier transform of the 
i basis function. Parameterization of the model is achieved 

by introducing a special feature of the Hermite functions, thus, by making them the 

eigenfunctions of the inverse Fourier transform as  
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 is the Hermite function which is modified by scaling. By introducing 'α' as a scale 
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Scaling was important because, in geophysical applications, the frequency covers wider ranges 

depending upon the problem discussed.  

41.2 A Meta-Algorithm To Optimize The Scale Parameter 

To develop a meta-algorithm to optimize the scale parameter, we use the Simulated Annealing 

Method which is a Global Optimization Technique. It is a method for solving unconstrained 

and bound-constrained optimization problems. Simulated annealing is an optimization process 

that is an analogy to the process of physical annealing with solids, in which a crystalline solid 

is heated and then allowed to cool very slowly until it achieves its most regular possible crystal 

lattice configuration. The method creates a relationship between this type of thermo-dynamic 

behavior and the search for global minima for a discrete optimization problem. It further 

provides an algorithmic means for exploiting such a connection. For each iteration, the 

objective function generates values for two solutions for comparison. Improved results are 

accepted, while some non-improving results are also accepted in the hope of escaping the local 

optima in search of global optima.  Thus, the algorithm accepts all new solutions that lower the 

objective function, but also with a certain probability, solutions that raise the objective function. 

By accepting solutions that raise the objective function, the algorithm avoids being trapped in 

local minima and is able to explore globally for more possible solutions. An annealing 

schedule is selected to systematically decrease the temperature as the algorithm proceeds. As 

the temperature decreases, the algorithm reduces the extent of its search to converge to a 

minimum. 

 To optimize the alpha parameter and determine it from the real statistics of the data, we 

first looked at the relationship between alpha and the data frequency. From the exponential 

sequence in the Hermite function,   

                          𝑒
−𝛼𝜔2

2 ⟹ 𝛼 =
1

𝜔0
2 =

1

(2𝜋𝑓0)2
    giving  

2

0

1

2
e





 
  

   

Since, ′𝛼′ changes by smaller values, the values of alpha were optimized through the 

frequency ′𝑓0′. We defined three sets of objective or energy functions to be minimized 

independently which include the data distance given by the difference between the measured 

and calculated data from the H-LSQ-FT (inverse FT), the model or spectrum distance with the 

DFT spectrum as reference spectrum and a combination of the data and model distances.  The 

minimized energy functions are given below: 

                𝐸𝑛𝑒 = ∑ (𝑑𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑑𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑)2𝑁
𝑘=1 = 𝑀𝑖𝑛                                (72) 
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                            𝐸𝑛𝑒 = ∑ (|𝑈𝑛
𝑐𝑎𝑙(𝜔) − 𝑈𝑛

𝐷𝐹𝑇(𝜔)|)2𝑁
𝑘=1 = 𝑀𝑖𝑛                                   (73) 

        𝐸𝑛𝑒 = ∑ (𝑑𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑑𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑)2𝑁
𝑘=1 + ∑ (|𝑈𝑛

𝑐𝑎𝑙(𝜔) − 𝑈𝑛
𝐷𝐹𝑇(𝜔)|)2𝑁

𝑘=1 = 𝑀𝑖𝑛 (74) 

We define a total number of 150 SA iterations with 30 random internal loop search. The search 

interval for ′𝑓0′ was 02 6f  . In each SA iteration, the inversion-based Fourier transform is 

called (with a given 𝛼 regulated by the SA algorithm) to estimate the energy function which 

is either accepted or rejected based on the change of the energy function. Below is the flow 

chart demonstrating the operational sequence of the alpha optimizing meta-algorithm.  

 

                

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 43, Flowchart of the Alpha Optimization Simulated Annealing Meta Algorithm 
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4.1.3 Numerical testing 

The time-domain signal (Figure 2) was used again to test the optimization capability of the 

newly developed meta-algorithm by applying the H-LSQ-FT and the traditional DFT in one 

dimension. The noiseless time function of the test data as described earlier by the formula below 

                                             )sin()(     tettu t                                                

where specified fixed values for the signal parameters are as follows: 91.738 , 2 , 

20 ,  40 , 4/  . The noise-free waveform was sampled at regular intervals of 

0.005 (sec) measurement points ranging over the time interval of [-1, 1] to produce 401 data 

points. 

The algorithm estimates the inverse Fourier transform of the input signal using the H-

LSQ-FT methods. The H-LSQ-FT was calculated with a series expansion coefficient of m=150. 

An objective function was then created in the form of an energy function to be optimized. The 

SA program randomly generates a scaling frequency ′𝑓0′ and energy  ′𝐸𝑛𝑒_𝑚𝑖𝑛′ to be 

minimized in each step of the iteration. The inversion based Fourier transform is called into the 

algorithm in each iteration to re-calculate the energy function to be minimized and the cycle 

continues. If the estimated energy is less than zero, the algorithm accepts the new solution but 

otherwise, the algorithm accepts the results based on the Metropolis acceptance condition. The 

input temperature decreases correspondingly for each iteration until the stop criteria are met 

and the algorithm returns the optimal solution. 

 The program first runs with noise-free data and an introduction of data noise (following 

Gaussian and Cauchy distributions). For the noise-free data, we optimize the scaling frequency 

using the data distance (eq. 72) to give Figure 44. The energy function reached a minimum of 

8.1737*10−6   after 60 iterations to give a scaled frequency of 3.9618 Hz. A similar 

optimization procedure was applied to the spectrum or model distance (defined in eq. 73) to 

give Figure 45. The results show the energy function arriving at a minimum of 8.158*10−5 

after 70 iterations to give an optimized frequency of 3.9592 Hz. Figure 46 shows the resultant 

frequency, energy reduction trajectory and the number of iteration when we optimized the 

scaling frequency from the combined data and model distances (given in eq.74). The input 

energy reached its minimum after 60 iterations to give a frequency of 3.9549 Hz. From a 

quantitative comparison of the output scaled frequencies, thus, 3.9618 Hz, 3.9592 Hz, and 

3.9549 Hz, it can be concluded that the algorithm has the ability to derive similar alpha values 

(𝛼 =
1

(2𝜋𝑓0)2
) from the three different energy functions generated by the method.  
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                             Fig 44; Noise-free optimization of alpha from the data distance 

 

 

 

 

 

 

 

 

 

 

 

                       

                         

                         Fig 45; Noise-free optimization of alpha from the spectrum distance 
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     Fig 46; Noise-free optimization of alpha from the combined data and spectrum distance 

 

To further demonstrate the efficacy of the method, we introduced Gaussian noise into 

the noise-free data to obtain Gaussian noisy data (Figure 5 above). We then optimized the 

scaling frequency in the data (eq. 72) and model domains (eq. 73) as well as in their combination 

(eq. 74) to give Figures 47, 48 and 49, respectively. By computing the input energy function 

from the Gaussian noisy data using data distance, the algorithm estimated a scaled frequency 

of 2.9548 Hz after 100 iterations (Figure 47) while the input energy reached its minimum after 

60 iterations. Similarly, a scaling frequency of 2.9514 Hz was obtained when optimization was 

effected in the model or spectrum domain (Figure 48). Figure 49 shows the output results when 

the scaling frequency was optimized from the combined data and model distances with 

Gaussian noise. The input energy reached its minimum or a constant value of 8.45*10−2 after 

60 iterations to optimize a scaled frequency of 2.9319 Hz after 80 iterations. Comparably, the 

optimized frequencies are almost the same in each domain with a calculated mean value of 2.94 

Hz.  
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                 Fig 47; Optimization of alpha from data distance with Gaussian Noisy 

 

 

 

 

 

 

 

 

 

 

  

 

 

                  

                     Fig 48; Optimization of alpha from spectrum distance with Gaussian Noisy 
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   Fig 49; Optimization of alpha from combined data and spectrum distances with Gaussian 

noisy data 

Since in practice Cauchy noise is normally encountered in acquired field data instead of 

Gaussian noise, we introduced Cauchy noise into the noise-free data to obtain Cauchy noisy 

data (Figure 6 above) for optimization. Output images showing frequency and energy 

trajectories for the optimized alpha values in the data and model domains are given in Figures 

50, 51 and 52 respectively. By using data distance, the algorithm estimated a scaled frequency 

of 2.4132 Hz after 80 iterations (Figure 50) while the input energy reached its minimum after 

75 iterations. Correspondingly, a scaling frequency of 2.7404 Hz was also attained when 

optimization was realized in the model or spectrum domain (Figure 51). Figure 52 shows the 

output results when the scaling frequency was optimized from the combined data and model 

distances with Cauchy noise. The input energy reached its minimum or a constant value of 

4.127*10−1 after 80 iterations to optimize a scaling frequency of 2.7538 Hz after 125 iterations. 

Comparably, the variations in the optimized scaling frequencies are insignificant with an 

estimated mean value of 2.64HZ. These tests show that, in practice, the alpha parameter can be 

adequately optimized using only the data distance in the face of any type of noise to give a 

correct estimate. Table 4 shows the final optimized frequencies and their calculated mean values 

in the different domains after the simulated annealing procedure.  
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                    Fig 50; Optimization of alpha from data distance with Cauchy Noisy 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                Fig 51; Optimization of alpha from spectrum distance with Cauchy Noisy 

 

In conclusion, we have developed an iterative procedure for optimizing the scaled parameter 

alpha, in the H-LSQ-FT Method. This procedure uses the simulated annealing technique to 

optimize the alpha parameter from the real statistics of the input data or output spectrum or a 

combination of both, hence, eliminating the human error component associated 
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Fig 52; Optimization of alpha from combined data and spectrum distances with Cauchy Noisy 

 

Table 4, Results from Alpha Optimization Test Using Simulated Annealing  

 Characteristic Frequency f0 

Data Distance 

Minimized 

Spectrum 

Distance 

Minimized 

Data And 

spectral 

Distance 

Minimized 

Mean Value 

Noiseless 3.9618 3.9592 3.9549 3.96 

Gaussian Noisy 2.9545 2.9514 2.9319 2.94 

Cauchy noisy 2.4132 2.7404 2.7538 2.64    

 

with defining the alpha parameter in the H-LSQ-FT Method. The results demonstrated that it is 

enough to use data distance in case of noisy data to optimize the alpha parameter as the 

algorithm gave similar output in the data space, spectrum space or a combination of both. This 

note is important because, in practice, optimization in the noise-free case is impossible since 

acquired geophysical data always has a noise component. Also, it is reasonless in practice to 

use comparison in spectral-domain with DFT, as it is highly noise-sensitive (this feature 

motivated the development of the inversion based FT method).  With the above alpha 

optimizing algorithm, it is certain that the H-LSQ-FT Method will exhibit a significant 

improvement in its noise reduction capabilities. 
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Chapter  5 

 

THE CONCEPT OF RANDOM-WALK SAMPLING 

 

5.1 Preliminary Investigations  

A random walk survey is a known stochastic or random process, that describes a path 

that consists of a succession of random steps along a survey line. With the advancement in 

survey tools which incorporates the global positioning system, the concept of random walk 

survey enable geophysicist to sample randomly in the field knowing the exact geographic 

coordinates of the acquired data. Conducting a geophysical survey is a multi-step process 

including survey planning and design, fieldwork, data processing and analysis, and preparing 

and presenting findings. The aim of a rigorous geophysical field measurement design is to 

obtain a representative survey data which can be interpreted to reveal subsurface bodies. The 

representative survey should be less expensive and less time consuming to conduct and if 

thoughtfully designed and carefully conducted, can yield results that accurately and reliably 

reflect subsurface characteristics relevant to advancing interpretation. Data acquisition in 

geophysical field surveys typically requires a grid of measurement stations (Parasnis, 1986). 

The data point density does not vary throughout the field and may not take into account whether 

anomalies are present. Therefore, the idea arose to develop survey systems to sample field data 

adapted to specific problems and accumulate the data for storage in the field. The traditional 

surveys enable samples to be taken on pre-defined equally spaced lines or grids. The concept 

of random-walk involves a survey pattern where data are collected on even in random walk 

paths along pre-determined grids. In the case of magnetic surveys, a well-organized 

geomagnetic survey system is presented, which avoids separate geodetic measurements by 

using a Global Positioning System (GPS) in combination with a magnetic system. The data is 

sent to the survey magnetic system for onward storage and monitoring which offers the 

possibility of adaptive data sampling in the exploration area of interest.  

Random-Walk survey design is a procedure for selecting a sample location in which all 

positions along the survey grid are given an equal probability of being selected or sampled as 

one takes a definite step along the survey line. Even in random-walk field surveys guarantees 

unbiasedness at the level of geometric sampling, but does not guarantee adequate precision. 

Other ways to implement random surveys include simple random measurements where data is 

taken randomly across the field of survey and systematic random sampling where 

measurements are taken at a definite interval at a non-regular step along a pre-determined grid. 
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Systematic uniform random surveys often offer an appropriate balance between the estimator 

precision and the time spent to obtain samples. It is easy to execute without mistakes along a 

survey line, and in many situations, is more precise than simple random measurements for a 

given survey area. Sampling on the corners of a regular square grid (lattice design) or 

equivalently at fixed intervals of random-walk long equally spaced parallel transects (Mulla 

and Bhatti, 1997) is the most commonly used Systematic uniform random surveys design used 

in geophysical field surveys. 

Technological advances in geospatial data have the potential to change how survey data 

are collected. Being affected by high costs, limited capacity, and difficulties in supervision, 

geophysical field data acquisition are often designed using non-probability approaches. As 

geospatial technology has improved and become more widespread, costs have decreased 

substantially and the number of available survey tools upgraded, making even in random-walk 

field-based sampling approaches accessible to more geophysicists. The practical possibility of 

the random-walk technique associated with its ease of implementation is seen from the 

continual development of the method, dissemination of associated techniques and algorithms 

in many areas of science and engineering (including biology, statistical physics, chemical 

engineering, astronomy, and geosciences). In the area of geoscience, an application of random-

walk measurements can be found in the field of hydrology, oil and gas exploration and 

subsurface repository of various wastes. Random-walk techniques have been employed as a 

direct simulation technique for passive tracer or pollutant transport in aquifers (Kinzelbach, 

1988; Kinzelbach and Unk, 1991; Zimmermann et al, 2001; Hoteit et al, 2002b; Delay et al, 

2005). At the laboratory scale, the technique has also been applied in post-processing intended 

at inferring effective transport properties in porous media such as permeability, porosity, and 

electrical conductivity. For example, electrical conductivity was first computed using a random 

walk by Kim and Torquato (1992) and Sahimi (2011). Similarly, at the same pore-to-sample 

scale, random walk techniques were also used to interpret Nuclear Magnetic Resonance (NMR) 

data (Neel et al, 2011, 2014; Guillon et al, 2013, 2014; Fleury et al, 2015). Various random-

walk data processing algorithms have been developed for anomaly detection using original non-

gridded data points. The possibility of sampling at random intervals with successful processing 

tools will eliminate the apparent misrepresentations sampling out of the grid creates in the data 

processing. To achieve this, we tested the processing strength of the newly developed robust 

2D H-IRLS-FT method and the traditional 2D DFT on synthetic magnetic anomaly generated 

on a regular and random walk geometries.  
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5.2 Application in Reduction to Pole (RTP) 

Magnetic data processing, also known as data reduction enable geophysicist to eliminate 

spikes and noise unrelated to the underlying geology from field measurements. Among the 

magnetic data reduction techniques applied in data processing include magnetic compensation, 

data checking and editing, diurnal variations removal, geomagnetic reference field removal, tie 

line leveling, micro leveling and reduction to pole (RTP). Each of these processing techniques 

performs specific functions to improve the quality of the acquired data. For instance, data 

checking and editing are performed on survey lines to help remove cultural anomalies from the 

data. Cultural anomalies are a serious problem in the geologic interpretation of magnetic data, 

especially modern surveys that typically fly low above cultural sources. Diurnal correction 

removes temporal variations of the earth's magnetic field and is achieved by subtracting the 

time-synchronized signal recorded at a stationary base magnetometer from the measured data. 

In addition, Tie line leveling utilizes supplementary data recorded on the lines to further adjust 

the data and is based on the fact that data recorded at the intersection of traverse and tie lines 

should be equal after data reduction, while Micro leveling eliminates subtle errors caused by 

variation in terrain clearance or elevation. After the above corrections, the data is gridded to 

obtain the total magnetic intensity (TMI) map containing various anomalies which are then 

reduced to the pole. The RTP filter transformed the anomalies such that they are centered over 

their subsurface causative bodies which compensate for latitudinal variations.  

Baranov (1957), Baranov and Naudy (1964) proposed the mathematical approach known 

as a reduction to the pole to simplify magnetic anomaly shape during interpretation. Reduction 

to the pole converts the magnetic field from magnetic latitude where the Earth's field is inclined, 

to the field at a magnetic pole, where the inducing field is vertical (Luo et al., 2010).  It is a data 

processing technique used to recalculate total magnetic intensity data as if the inducing 

magnetic field had a 90⁰ inclination. This filter transforms dipole magnetic anomalies to 

monopole anomalies centered over their causative bodies which can simplify the interpretation 

of data. A magnetic anomaly depends on the inclination and declination of the body’s 

magnetization, the inclination and declination of the local earth’s magnetic field, and the 

orientation of the body with respect to the magnetic north (Nabighian et al. 2005). When the 

Earth's field is inclined, magnetic anomalies due to induction have forms that are 

asymmetrically related to their sources, but when the inducing field is vertical, the induced 

anomalies are directly over their sources (Milligan and Gunn, 1997). Reduction to pole requires 

knowledge of the direction of magnetization, often assumed to be parallel to the ambient field. 
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The RTP concept makes the simplifying assumption that the rocks in the survey area are all 

magnetized parallel to the earth's magnetic field and is true in the case of rocks with an induced 

magnetization only, however remnant magnetization will not be correctly dealt with if the 

direction of remanence is different to the direction of the earth's magnetic field.  Reduction to 

the pole was achieved by applying the formula in the frequency domain given as                          

                                              )v,u(S)v,u(T)v,u(R  , (75)                                                                      

where T(u,v) is the 2D Fourier transform of the magnetic data set, S(u,v) is the frequency domain 

operator of pole reduction and R(u,v) is the reduced data set after the data reduction process. In 

practice, RTP operation becomes unstable at lower magnetic latitudes because of a singularity 

that appears when the azimuth of the body and the magnetic inclination both approach zero 

(Nabighian et al. 2005). Numerous approaches have been proposed by various researchers to 

overcome this problem. Leu (1982) suggested reducing anomalies measured at low magnetic 

latitudes to the equator rather than the pole. Pearson and Skinner (1982) proposed a whitening 

approach that strongly reduced the peak amplitude of the RTP filter, thus reducing noise. 

Mendonca and Silva (1993) used a truncated series approximation of the RTP operator. Gunn 

(1972, 1995) designed Wiener filters in the space domain by determining filter coefficients that 

transform a known input model at the survey location to a desired output at the pole. Keating 

and Zerbo (1996) also used Wiener filtering by introducing a deterministic noise model, 

allowing the method to be fully automated. 

5.2.1 Numerical test in 1D using Morlet signal 

The Morlet waveform (Figure 2) was used to test the applicability of the H-IRLS-FT method 

on random measurements in one dimension. As a first step, the Morlet waveform was sampled 

equidistantly in 401 points ranging over the time interval of [-1, 1] and processed using the 

traditional DFT method to give both the real and imaginary parts of Fourier Transform. The 

same equidistantly sampled waveform was also processed using the H-IRLS-FT method. The 

result is shown in Figure 55.  Both the traditional DFT and the H-IRLS-FT showed similarities 

in the output processed real and imaginary parts of the Fourier spectrum. 
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Figure 53; The spectrum of the equidistantly sampled Morlet Waveform processed  

with DFT and also with H-IRLS-FT method 

To test the efficiency of the H-IRLS-FT method in random-walk measurements, the Morlet 

waveform was sampled randomly for processing. In this experiment, the same number of 

samples were used with randomly selected positions in the whole time interval. The randomness 

of the sampling is demonstrated in Figure 54 whilst Figure 55 shows the H-IRLS-FT spectrum 

of the signal. It can be seen, that both its real and imaginary parts are exactly the same as that, 

found in regularly sampled cases (Figure 53). This proves that the inversion based Fourier 

Transform method gives the same results in processing both regularly and non-regularly 

sampled data set. 
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Figure 54. The randomly selected sample points used for sampling the Morlet Waveform 

 

Figure 55; The H-IRLS-FT spectrum of the randomly sampled Morlet Waveform 

5.3.1 A magnetic dipole  example with equidistant sampling 

For practical purposes, an upgraded program code was written to further test and evaluate the 

effectiveness of the 2D DFT and the 2D H-LSQ-FT methods for processing equidistant and 

non-equidistant (random-walk) geometry dataset. A grid-based sampling area of 6000m in both 

X and Y directions was created with a regular sampling interval of 400m in both directions as 

shown in Figure 56. An analytic magnetic dipole source was generated at a depth of 1000m 

below an initial surface elevation of zero degrees (sea level). The Total Magnetic Intensity (T) 
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of the dipole source used was based on Karoly I. Kiss (2009), Magnetic Methods of Applied 

Geophysics. To calculate the Total Magnetic Intensity of the dipole source, fixed source 

parameters included magnetic moment, inclination and declination of the earth which were 

given as 109A⋅m2, 60°, and 0° respectively. Remnant magnetization was not taken into 

consideration. The calculated total magnetic field in 2D contoured and 3D surface maps are 

shown in Figures 57 and 58 respectively. The mapped anomaly clearly shows magnetic 

variations in highs (red) and lows (blues) demonstrating the dipole nature of the magnetic field.  

 

 

 

 

 

 

 

 

 

 

Figure 56; Regular grid of measuring stations 

 

 

 

 

 

 

 

 

 

 

         Figure 57; Total Magnetic Field of the Dipole from Equidistant grid 
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Figure 58; 3D Total Magnetic Field of the Dipole from Equidistant grid 

Prior to applying the traditional 2D DFT and the Robust 2D H-LSQ-FT, a 2D frequency 

spectrum of the dipole source based on the analytical formula was first calculated. Also, the 

data was transformed between -1 and 1 to obtain appropriate values in the space domain. To 

effectively evaluate and assess the appropriateness of the two methods in processing the data, 

well-proven analytical techniques such as the Mean Deviation and Root Mean Square (RMS) 

Deviation were estimated in other to quantify differences in the applied methods. Figures 59 

and 60 show the real and imaginary parts of the spectrum produced from the 2D DFT whilst 

Figures 61 and 62 show similar spectrums produced from the 2D H-LSQ-FT as applied to the 

data. A visual comparison between the real and imaginary parts of the spectrum from both 

methods shows no significant variations or differences. This observation was highly supported 

by the estimated mean deviation between the exact real spectrum and the real spectrum from 

the two methods as shown in table 5 below.  

Table 5. Analytical output spectra values for Root mean square deviation and Mean deviation 

for equidistant grid 

Spectrum type Root mean square deviation Mean deviation 

2D DFT Imaginary Spectrum 0.00036976 0.00031870 

2D H-LSQ-FT Imaginary Spectrum 0.00031043 0.00029932 

2D DFT Real Spectrum 0.0018364 0.00031870 

2D H-LSQ-FT Real Spectrum 0.0019361 0.00029932 

RTP map of 2D DFT 0.16861 0.1103 

RTP map of 2D H-LSQ-FT 0.11038 0.1104 
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Figure 59; Real part of the magnetic dipole spectrum from the 2D DFT 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 60; Imaginary part of the magnetic dipole spectrum from the 2D DFT 
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Figure 61; Real part of the magnetic dipole spectrum from the 2D H-LSQ-FT 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 62; Imaginary part of the magnetic dipole spectrum from the 2D H-LSQ-FT 

 

In other to achieve statistical robustness, accuracy, and stability in the application of the 2D H-

LSQ-FT method, Hermite functions of maximum order of ‘23’ was used. The data were scaled 

using 0.8m in both X and Y directions. This was observed to be a good compromise between 

accuracy and stability.  Using the frequency spectrums produced from the DFT and the H-LSQ-
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FT methods, the equidistantly sampled data was reduced to the pole to give Figure 63. A visual 

comparison shows no significant differences between the two RTP maps, as the anomalies are 

both concentrated. Analytically, the Root Mean Square Deviation of the exact and 

approximated RTP for the DFT is 0.16861 (Table 5) whilst that of the H-LSQ-FT is 0.11038. 

This shows the similarities in the output RTP maps from both methods. The results demonstrate 

that the traditional 2D DFT and the newly developed Robust 2D H-LSQ-FT were successful in 

processing datasets acquired on an equidistant grid.    

Figure 63; Reduced to the pole maps from 2D DFT (left) and 2D H-LSQ-FT (right) using an 

equidistant grid. 

5.3.2 A  magnetic dipole example with non-equidistant sampling 

Practically, the traditional DFT Method is ineffective and inefficient in processing geophysical 

measurement taken in irregular (random) grid, unless additional processing techniques are 

introduced into the program development, hence the DFT was not applied in this step. To test 

the applicability of the 2D H-LSQ-FT method on randomly sampled data, the regular 400 m 

sampling interval as applied in the equidistant survey (Figure 56) was randomized to produce 

irregular measurements across the survey area as shown in Figure 64 below. Fixed source 

parameters (inclination, declination and magnetic moment) for the dipole source were equal to 

that of the equidistant example. The calculated total magnetic field in 2D contoured and 3D 

surface maps are shown in Figures 65 and 66 respectively. Comparing these maps to that of the 

equidistant grid maps (Figures 57 and 58 above), it can be observed that the dipole source in 

the case of non-equidistant is slightly irregular (Figure 65) and does not fill the entire survey 

area. This is not different for the 3D surface map (Figure 66), the random nature of the sampling 

interval resulted in a much rougher and unbalanced surface.  
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Figure 64; Random grid of measuring stations 

 

 

 

 

 

 

 

 

 

 

 

Figure 65; Total Magnetic Field of the Dipole from Non-equidistant grid 
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Figure 66; 3D Total Magnetic Field of the Dipole from Non-equidistant grid 

The data was re-arranged into columns to facilitate the application of the 2D H-LSQ-FT 

method. This was followed by a selection of the parameters of the series expansion and 

weighting function. An inverse problem was formulated using the Gaussian Least Squares 

approach where the coefficient of the series expansion was estimated. As explained in the 

equidistant example, Hermit functions of maximum order of 23 were used with a scaling factor 

of 0.8 m. Figure 67 shows the constrained space-frequency interval as figures 68 and 69 shows 

the real and imaginary parts of the 2D H-LSQ-FT spectrum in the space domain for the random 

sampling. Table 6 below shows estimated values for comparing the output spectra from 2D H-

LSQ-FT for equidistant and non-equidistant sampling. 

Table 6. Analytical output spectra values for equidistant and non-equidistant sampling (H-

LSQ-FT) 

Spectrum Type Root Mean Square Deviation (RMSD) 

Equidistant  Non-equidistant 

H-LSQ-FT Imaginary Spectrum 0.00031043 0.00031043 

H-LSQ-FT Real Spectrum 0.0019361 0.0019361 
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Figure 67; Constrained Frequency Intervals from 2D Scaled Hermit Function 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 68; Real part of the magnetic dipole spectrum from the 2D H-LSQ-FT 
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Figure 69; Imaginary part of the magnetic dipole spectrum from the 2D H-LSQ-FT 

A visual comparison of figures 68 and 69 to the output spectra of the 2D H-LSQ-FT method 

for equidistant sampling (Figures 61 and 62 above) shows approximately the same spectra for 

the real and imaginary parts of the Fourier spectrum in regular and non-regular sampling. The 

root means square deviations as estimated for the 2D H-LSQ-FT method (Table 6) are 

0.00031043 and 0.0019361 respectively for the imaginary and real parts of the spectrum for 

equidistant and non-equidistant sampling. This demonstrates the 2D H-LSQ-FT ability to 

derive similar output spectra for both regular and randomly sampled data. From this success, 

the randomly sampled magnetic dipole data was reduced to the pole as shown in Figure 70. The 

anomaly as seen from the RTP map is concise and the same as that produced from the 

equidistant sampling (Figure 63). This indicates that the newly created Robust 2D H-LSQ-FT 

method gave the same result or output RTP maps for the equidistant and non-equidistantly 

sampled datasets. The Root means square deviation of the exact and approximated reduction to 

pole is 0.24752 while the Mean deviation of the exact and approximated reduction to pole is 

0.15670. 
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Figure 70; Reduced to the pole map by 2D H-LSQ-FT using Non-equidistant grid 

 

5.1.4 Numerical test using a synthetic magnetic data 

To prove the applicability of the 2D inversion based H-IRLS FT method on randomly sampled 

data, it was tested on synthetic magnetic data sets sampled at regular equidistant and non-

equidistant intervals. In all, 41 x 41 measurement points were sampled along a 5 m x 5 m regular 

grid and further randomized to obtain non-equidistant measurements. Data were generated for 

a surface between +/-100 m both in the x and y directions above a ‘CL’ shaped magnetic body 

(inclination I=63°, declination D=3°, magnetization 200 nT). The surface magnetic data were 

calculated by the Kunaratnam (1981) method and was subsequently reduced to the pole (I=90°) 

by applying the formula in the frequency domain using Eqn 75. First, the reduction to the pole 

was performed by using the conventional 2D DFT algorithm on equidistantly sampled magnetic 

data. The map of noiseless magnetic data on the equidistant grid and its reduced to pole version 

are given in Figure 71. The 2D spectrum of the regularly sampled data set was calculated by 

means of 2D DFT and 2D H-IRLS-FT (Figure 72). For numeric reasons, the calculated spectra 

were made on the data set transformed to [-1,1] in both x and y coordinates resulting in an 

appropriate scale in the wavenumber domain. The 2D H-IRLS-FT spectrum was calculated 

using Hermite functions of the (maximal) order of M=28. The similarity of the two results are 

obvious and can be increased by using higher-order basis functions. This has a consequence in 

increased computation time and in a rapid change of the condition number. The M=28 was 

found as a good compromise between accuracy and stability. 
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Figure 71; Noise-free Magnetic Map calculated on Equidistant grid (left) and it Reduced to 

the Pole map using the conventional DFT(right). 

 

 

Figure 72; DFT spectrum of the Magnetic data set calculated on the Equidistant grid (left) and 

the H-IRLS-FT spectrum of the Magnetic data set calculated on the Non-Equidistant grid 

(right). 

 

The total magnetic intensity data was further calculated on a randomized set of sample points. 

The randomly selected x and y coordinates are shown in Figure 73, the sample points are 

defined by ordering all y coordinates to all of the x position resulting in 41x41 sample points.  
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Figure 73; The randomly selected x and y coordinates used for generating 41x41 sample 

points 

The magnetic field data calculated in these non-regular positions were processed using the 2D 

H-IRLS-FT algorithm, the resulting spectrum is given in Figure 74 (for the sake of 

comparability, the IRLS-FT spectrum calculated in the regular grid is also shown, Figure 72 

right). As can be seen, the two spectra are the same (both calculations were performed with the 

same inversion parameters using series expansion by means of Hermite functions of M=28 

order). The produce spectra prove that the 2D H-IRLS-FT algorithm has a very important 

feature, that it works on both regularly or irregularly sampled data sets.   

Figure 74; 2D H-IRLS-FT spectrum of the Magnetic data set calculated on Equidistant grid 

(left) And non-Equidistant grid (right). 
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From this fact, it is straightforward to expect that the method gives the same result in reducing 

to pole for both regularly sampled (in Figure 75, left) and randomly sampled data sets (Figure 

75, right). As was observed in the above 1D example, the inversion based 1D H-IRLS-FT 

algorithm was successfully applied in processing a non-regularly sampled data set. This 

important observation has been extended to the two-dimensional case by testing the 2D H-

IRLS-FT method on the randomly selected set of sample points to give a similar result. The 

efficiency of the new 2D H-IRLS-FT algorithm in processing random-walk sampled data is 

clearly observable, demonstrating that the method gives accurate results even in “random walk” 

measurements.  

 

Figure 75; The pole reduced Magnetic data sets using 2D H-IRLS-FT for Equidistant 

sampling (left) and non-Equidistant or random sampling (right). 
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Chapter 6 

FIELD EXAMPLES USING RANDOM-WALK GEOMETRY 

6.1 Geology of the Study Area 

The area from which the magnetic dataset was selected for processing is located in the 

north-eastern region of Hungary (Fig. 76). The subsurface geological structures and the rock 

formations with which a local magnetic anomaly occurs is situated near the town called 

Mezőkövesd, to the south of the Bükk Mountains (Figure 77). The shaded relief map (Figure 

77) indicates the main mass of the Bükk Mountains (darker green area) and the positions of the 

towns (pink areas) in the area (Miskolc, Mezőkövesd, Eger). The Pre-Cenozoic basement 

outcrops close to the surface over the area of the Bükk Mountains and gradually dips to the 

southern direction due to a fault zone where it is covered by Neogene clastic sedimentary and 

pyroclastic beds. Faults with strike direction of north-east to the south-west and dip direction 

of the north-west are dominant in the southern part of the Bükkalja mountains. To the south-

east of the Bükkalja mountains, an elongated depression, the Vatta-Maklár trough occurs in the 

basement with a strike direction parallel to that of the above-mentioned faults bordering it. The 

depth of the buried basement may reach as deep as 3000 m below the vertical datum (Baltic 

Sea vertical datum) along the axis of the trough (Fig. 78). The trough is bordered to the south-

east by a threshold running below the area near Mezőkövesd (Mezőkövesd threshold). Along 

this threshold, the basement is in an uplifted position compared to the trough. The top of the 

threshold near Mezőkövesd (Fig. 78) is about 800 m below the vertical datum (Pelikán et al. 

2005). 

 

Figure 76: The location of the area in Hungary. 
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Figure 77: Geographical surroundings of the selected area. (www.google.hu) 

 

 

Figure 78: Pre-Cenozoic basement below the southern foreland of the Bükk mountains. The 

brown contour lines indicate the depth levels of the basement. The coloured areas mostly 

bordered by tectonic lines (red lines) show the arrangement of different rock formations. The 

red points with black rims represent the positions of former drill sites. (web maps of Mining 

and Geological Survey of Hungary, https://map.mbfsz.gov.hu) 

 

Miskolc 

Mezőkövesd 

Eger 
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This uplift of the basement causes excess mass in its surroundings because its bulk density is 

significantly greater than that of the Neogene beds bordering it laterally. The effect of this 

lateral anomaly in the bulk density was detected by gravity measurements. The Bouguer 

anomaly map of the area presented in Figure 79 directly indicates both the Vatta-Maklár trough 

with a stripe of high negative values (dark green colour) and the Mezőkövesd threshold with 

less negative values (light green colour). The area filled with brown (positive Bouguer anomaly) 

colour shows the main mass of the Bükk Mountains where the high-density basement is above 

the level of its foreland. 

 

Figure 79: Bouguer anomaly map of the selected area with the effect of Mezőkövesd 

threshold located to the south-east of Vatta-Maklári trough. The difference between the 

neighboring isogal lines is 2 mgal. (web maps of Mining and Geological Survey of Hungary, 

https://map.mbfsz.gov.hu) 

 

The narrower environment of the Bouguer anomaly caused by the Mezőkövesd threshold can 

be studied in more detail in Figure 80. A refracted cross-section line between two points of the 

area (A and B) is also displayed. The curve of Bouguer anomaly and the geological cross-

section along this line are presented in Figure 81. The route of the cross-section line is also 

shown in Figure 78 (yellow line). 

Mezőkövesd  

threshold 
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Figure 80: Bouguer anomaly map with a refracted cross-section line. The values of some 

isogal lines are also marked. (web maps of Mining and Geological Survey of Hungary, 

https://map.mbfsz.gov.hu) 

 

 

Figure 81: Bouguer anomaly curve (above) and geological cross-section (below) along a 

refracted cross-section line between points A and B. (Takács et al., 1993) 
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The geological cross-section in Figure 81 shows that a significant amount of Neogene 

(Miocene) volcanic rocks, mostly pyroclastic rocks, were deposited on the older formations. 

The sites of the deep boreholes formerly drilled above and near the Mezőkövesd threshold can 

be studied in Figure 82. One of these boreholes (Mk-4) traversed this Miocene stratigraphic 

unit between 440 m and 1496 m and penetrated into the Oligocene sediment. The volcanic rock 

was described as dark grey andesite tuff. The depth was measured from the drill floor with an 

elevation of 111,77 m above the vertical datum (Adriatic Sea vertical datum).  

 

Figure 82: Bouguer anomaly map with the sites of deep boreholes drilled above and near the 

Mezőkövesd threshold. (the abbreviations in the short names come from the names of the near 

settlements: Mk = Mezőkövesd, Mn = Mezőnyárád, Szi = Szihalom) (web maps of Mining 

and Geological Survey of Hungary, https://map.mbfsz.gov.hu) 

The presence of ferromagnetic minerals in this volcanic rock is the reason why not only a 

Bouguer anomaly but also a local magnetic anomaly was detected above the Mezőkövesd 

threshold. The dipolar anomaly in the vertical component of the magnetic field which is 

associated with the geological structure is presented in Figure 83. The route of the refracted 

cross-section line previously introduced is also shown to help in comparing the positions of 

gravity and magnetic anomalies. A square area with a side length of 10 km was selected from 

the magnetic anomaly map, which is shown in Figure 84. This area includes primarily the 

dipolar anomaly in the vertical component of the magnetic field connected to the Mezőkövesd 

threshold. The regional effect coming from deeper and lateral geological objects functioning as 

magnetic causative bodies is not too significant within this delimited volume. 
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Figure 83: Map of the vertical component of the local magnetic field with the cross-section 

line previously introduced. The cross-section line passes a dipolar magnetic anomaly 

associated with the Miocene volcanic rock deposited onto the uplifted block of the Pre-

Cenozoic basement and Paleogene sediments. The difference between the neighboring 

isodynamic lines is 12.5 nT. (web maps of Mining and Geological Survey of Hungary, 

https://map.mbfsz.gov.hu) 

 

 

Figure 84: Map of the vertical component of the local magnetic field with the selected local 

anomaly bordered by a square area. (web maps of Mining and Geological Survey of Hungary, 

https://map.mbfsz.gov.hu) 
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6.2 A field example with Equidistant sampling 

we digitized the magnetic map shown in Figure 84 along its isodynamic lines, the magnetic 

anomaly was approximated over regular grids of imaginary measuring stations. Two grids with 

different sampling intervals (250 m and 500 m) are illustrated in Figure 85. The approximated 

magnetic anomaly based on these grids are represented on the contour maps of Figure 86 and 

the surface maps of Figure 87. At first, the 2D DFT algorithm was applied for producing the 

spatial frequency spectrum of the anomaly, then it was filtered with the transfer function of the 

reduction to the magnetic pole. The values of the input parameters necessary for the transfer 

function were determined by means of experiments performed with the magnetic anomaly of a 

point-like dipole source. Since the analytical formulae describing the anomaly of such a source 

are known for both spatial and spatial frequency domains, the suitably chosen values of the 

parameters resulted in very similar orientation and polarity of the dipole’s anomaly to those of 

the selected local anomaly. The resultant magnetism of the anomaly was not treated as the sum 

of remanent and induced magnetism, because no exact information was available for the 

inclination and declination of former magnetic fields as well as the displacement and the 

rotation of the piece of basement carrying the magnetic anomaly during the last few millions of 

years. The selected values of the input parameters derived from the above-mentioned 

experiments were the following: an inclination of both the remanent and the external magnetic 

fields = -47 ° whereas Declination of both the remanent and the external magnetic fields= -10 

° 

  

Figure 85: Regular grids of imaginary measuring stations with sampling intervals of 250 m 

(left) and 500 m (right) in both horizontal directions. 
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Figure 86 Contour maps of the approximated magnetic anomaly based on the regular grids 

with sampling intervals of 250 m (left) and 500 m (right). The unit of isodynamic lines is in 

nT. 

 

  

Figure 87: Surface maps of the approximated magnetic anomaly based on the regular grids 

with sampling intervals of 250 m (left) and 500 m (right). 

 

After the 2D DFT of the magnetic anomaly had been filtered with the transfer function of the 

reduction to pole, the result of this operation was transformed back to the spatial domain by 

means of the 2D IDFT algorithm. Essentially, the result of this inverse transform is regarded as 

the reduction of the magnetic anomaly to the magnetic pole. It is shown for the magnetic 

anomaly sampled with two different intervals on the contour maps (Figure 88) and the surface 

maps (Figure 89). Although these figures show the success of the filtering operation, the quality 

of the result is not too good. The output shows an anomaly of monopole nature dominating the 

maps. The roughness of the results is due to the computational noise connected with the 2D 

DFT algorithm. Clearly, the rarer sampling causes a lower resolution of the filtered anomaly. 
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Figure 88: Contour maps representing the reduction of the magnetic anomaly to the magnetic 

pole for the regular grids with sampling intervals of 250 m (left) and 500 m (right). The 

filtering operation was executed on the 2D DFT of the anomaly. 

 

  

Figure 89: Surface maps representing the reduction of the magnetic anomaly to the magnetic 

pole for the regular grids with sampling intervals of 250 m (left) and 500 m (right). The 

filtering operation was executed on the 2D DFT of the anomaly. 

 

Next, the 2D H-LSQ-FT algorithm was applied for producing the spatial frequency spectrum 

of the anomaly. The application of this algorithm requires the suitable setting of the parameters 

(the scaling factor of the weighting function and the number of terms involved in the series 

expansion) controlling the series of Hermit functions used for approximating the Fourier 

spectrum. The optimal values of these parameters highly depend on the input dataset. After 

adjusting the parameters, the approximation of the spatial frequency spectrum of the anomaly 

was computed by means of the 2D H-LSQ-FT. This intermediate result was filtered with the 

transfer function of the reduction to pole. The filtering operation provided the final result, the 

reduction of the magnetic anomaly to the magnetic pole, which is represented for the magnetic 
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anomaly sampled with two different intervals on the contour maps of Figure 90 and the surface 

maps of Figure 91. A quick visual comparison of the results with those ones based on the 2D 

DFT of the anomaly is enough to decide that the application of 2D H-LSQ-FT for the reduction 

to magnetic pole is much more advantageous. 

 

  

Figure 90: Contour maps representing the reduction of the magnetic anomaly to the magnetic 

pole for the regular grids with sampling intervals of 250 m (left) and 500 m (right). The unit 

of isodynamic lines is nT. The filtering operation was executed on the 2D HLSQFT of the 

anomaly. 

 

  

Figure 91: Surface maps representing the reduction of the magnetic anomaly to the magnetic 

pole for the regular grids with sampling intervals of 250 m (left) and 500 m (right). The 

filtering operation was executed on the 2D HLSQFT of the anomaly. 
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6.3 A Field Example with Non-Equidistant Sampling 

As the 2D H-LSQ-FT proved its success for 2D magnetic datasets with a regular grid of 

measuring stations, there is every reason to suppose that the algorithm is also effective when 

the measuring stations are located irregularly in the field. The regular grids shown in Figure 85 

were distorted with random numbers using linear interpolation to produce the irregular 

distributions of measuring stations of Figure 92. The approximated magnetic anomaly based on 

these sets of points is represented on the contour maps of Figure 93 and the surface maps of 

Figure 94. It is worth comparing these figures with Figures 86 and 87 which show the anomaly 

over regular grids. The effect of point distribution and density on the quality of anomaly maps 

(visual representation of input datasets) can be observed in such a way. 

  

Figure 92: Irregular distributions of measuring stations derived from the regular grids shown 

in Fig. 10. by adding random values to the coordinates. 

  

Figure 93: Contour maps of the approximated magnetic anomaly based on the irregular 

distributions of measuring stations shown in Fig. 17. The unit of isodynamic lines is nT. 
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Since the 2D H-LSQ-FT algorithm does not require an equal-spaced grid of data, it is able to 

provide a fine approximation of the Fourier spectrum even for irregular grids. The filtering 

operation was executed using the 2D H-LSQ-FT on these input data sets. The reduction of the 

magnetic anomaly to the magnetic pole coming from the filtered spectrum is shown for the 

magnetic anomaly sampled at two different irregular grids on the contour maps with Figure 95 

and the that of the surface maps (Figure 96). After comparing these maps with those of Figures 

90 and 91, one can easily state that the distortion of regular grids did not cause significant 

worsening in the qualities of the results. The demonstrated maps prove the effectiveness of the 

2D H-LSQ-FT in the execution of the reduction of the magnetic anomaly to the magnetic pole 

for both regularly and irregularly sampled anomalies. 

 

  

Figure 94: Surface maps of the approximated magnetic anomaly based on the irregular 

distributions of measuring stations shown in Fig. 17. 

 

  

Figure 95: Contour maps representing the reduction of the magnetic anomaly to the magnetic 

pole for the irregular grids of measuring stations shown in Fig. 17. The unit of isodynamic 

lines is nT. The filtering operation was executed on the 2D HLSQFT of the anomaly. 
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Figure 96: Surface maps representing the reduction of the magnetic anomaly to the magnetic 

pole for the irregular grids of measuring stations shown in Fig. 17. The filtering operation was 

executed on the 2D HLSQFT of the anomaly. 
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Chapter 7 

Summary 

Data and information processing is an essential aspect of geophysics, hence the continual need 

to develop methods of scientific value to enhance data interpretation. An ideal processing 

method should have the ability to reduce substantially or eliminate completely data noise and 

recover important information from randomly occurring outliers. Fourier transformation is a 

processing tool used in continuous and discrete data processing in geophysics, but 

unfortunately, incorporate data noise in its transformational process. Though effective in 

processing certain data types, the traditional methods are inefficient when input data contains 

randomly occurring data noise and outliers, hence the need for a more stable, robust and less 

noise-sensitive method to be developed. In the field of inverse problem theory, a variety of 

numerous procedures are available for noise rejection, therefore, Dobroka et al, 2012 

formulated the Fourier transformation as an overdetermined inverse problem using Hermite 

functions as basis functions of discretization (the H-LSQ-FT and H-IRLS-FT) which proved to 

have a higher noise reduction capability even in the face of randomly occurring outliers than 

the traditional Discrete Fourier Transform (DFT). The discretization of the Fourier spectrum 

required the numerical scaling of the Hermite functions used as basis functions of discretization. 

Unfortunately, the values of the scale parameters were inserted manually into the H-LSQ-FT 

and H-IRLS-FT algorithms from practical experience based on one’s own discretion, hence, 

problematic. This thesis seeks to: 

- Develop a new inversion-based Fourier transformation method using Legendre 

polynomials as basis functions of discretization thereby eliminating the scaling 

parameter component of the algorithm associated with the use of scaled Hermite 

functions. 

- Improve the existing H-LSQ-FT and the H-IRLS-FT algorithms by introducing a meta-

algorithm to optimize the scale parameter thereby eliminating the human component.  

- Practically, demonstrate the applicability of the series expansion based inverse Fourier 

transform in processing non-equidistantly (randomly) acquired geophysical data.  

A new 1D inversion based Fourier transformation method known as the Legendre-Polynomials 

Least-Squares Fourier Transformation (L-LSQ-FT) and the Legendre-Polynomials Iteratively 

Reweighted Least-Squares Fourier Transformation (L-IRLS-FT) is presented. The introduced 

L-LSQ-FT method treats the Fourier transformation as an overdetermined inverse problem. The 

spectrum is discretized by series expansion using Legendre polynomials as basis function and 
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the inversion problem is solved for the series expansion coefficients by the LSQ method using 

Steiner weights. We, therefore, introduce the new Jacobi matrix as  

                                                       ,

1
( )

2

kj t

k n nG P e d
 







                                               

or in a more formal notation 

                                                        1

, ( )k n k nG P  F .                                                   

As a tool for calculating the inverse Fourier transform the FFT algorithm has been used. The 

practice of geophysical inversion shows that the least square solutions are very sensitive to 

sparsely distributed large errors, thus, outliers in the data set and the estimated model 

parameters may even be completely non-physical. A more flexible method was defined by 

modifying the weights with the help of Steiner’s Most Frequent Value method. The Fourier 

transformation was handled as a robust inverse problem using the IRLS algorithm with Cauchy-

Steiner weights to give the L-IRLS-FT method. The discretization of the continuous Fourier 

spectra is given by a series expansion with the Legendre polynomials as basis functions. The 

expansion coefficients are determined by solving an overdetermined inverse problem. The 

traditional DFT, L-LSQ-FT and the L-IRLS-FT were tested numerically using a Morlet 

waveform in the presence of both Gaussian and Cauchy noise. The results fully demonstrate 

the reduced outlier and random noise sensitivity of the newly developed L-LSQ-FT and L-

IRLS-FT methods compared to the traditional DFT. It was further concluded that the newly 

developed L-LSQ-FT and L-IRLS-FT can be considered as a better alternative to the traditional 

DFT but complementary support to the original H-LSQ-FT and H-IRLS-FT methods. 

After successful application in 1D, the concept of using Legendre polynomials as basis 

functions of discretization was extended to the 2D domain where a new 2D inversion based 

Fourier transformation method known as the 2D Legendre-Polynomials Least-Squares Fourier 

Transformation (2D L-LSQ-FT) and the 2D Legendre-Polynomials Iteratively Reweighted 

Least-Squares Fourier Transformation (2D L-IRLS-FT) was developed. The introduced 2D L-

LSQ-FT method also treated the Fourier transformation as an overdetermined inverse problem. 

The spectrum is discretized by series expansion using Legendre polynomials as basis function 

and the inversion problem is solved for the series expansion coefficients by the 2D LSQ method 

using Steiner weights. We, therefore, introduce the new Jacobi matrix as  

                         𝐺𝑛𝑚
𝑘𝑙 =

1

√2𝜋
∫ 𝑃𝑛(𝜔𝑥)𝑒

𝑗𝜔𝑥𝑥𝑘𝑑𝜔𝑥 .   
1

√2𝜋
∫ 𝑃𝑚(𝜔𝑦)𝑒

𝑗𝜔𝑦𝑦𝑙𝑑𝜔𝑦  
∞

−∞

∞

−∞
                             

 

DOI: 10.14750/ME.2020.008



107 
 

or in a more formal notation 

                                                𝐺𝑛,𝑚
𝑘𝑙 = ℱ𝑘

−1{𝑃𝑛(𝜔)}. ℱ𝑙
−1{𝑃𝑚(𝜔)}                                            

The Fourier transformation was additionally handled as a robust inverse problem using the 2D 

IRLS algorithm with Cauchy-Steiner weights to give the 2D L-IRLS-FT method. The 

discretization of the continuous Fourier spectra is given by a series expansion with the Legendre 

polynomials functions as basis functions. The traditional 2D DFT, 2D L-LSQ-FT, and the 2D 

L-IRLS-FT were tested numerically using a generated 2D test surface in the presence of both 

Gaussian and Cauchy noise. The result showed that newly developed 2D L-LSQ-FT and the 

2D L-IRLS-FT were more efficient in eliminating data outlier and randomly occurring noise 

compared to the traditional 2D DFT method. Comparatively, the newly developed 2D L-LSQ-

FT and 2D L-IRLS-FT were better alternatives to the traditional DFT but complementary 

support to the original 2D H-LSQ-FT and 2D H-IRLS-FT methods. 

To develop a meta-algorithm to optimize the scale parameter used in the H-LSQ-FT 

Method, the Simulated Annealing Method which is a Global Optimization Technique is applied. 

An objective function was generated in the form of an energy function to be optimized. The SA 

program unsystematically creates a scaling frequency ′𝑓0′ and energy  ′𝐸𝑛𝑒_𝑚𝑖𝑛′ to be 

minimized in each step of the iteration. The inversion based Fourier transform is called into the 

algorithm in each iteration to re-calculate the energy function for the cycle to continue. The 

algorithm accepts a new solution if the estimated energy is less than the condition number ‘one’, 

otherwise the acceptance is based on the Metropolis acceptance condition. The input 

temperature declines continually for each iteration until the stop criteria are met and the 

algorithm proceeds to the optimal solution. This procedure uses the simulated annealing 

technique to optimize the alpha parameter from the real statistics of the input data or output 

spectrum or a combination of both, hence, eliminating the human error component associated 

with defining the alpha parameter. The numerical testing of the meta-algorithm in the noiseless 

and noisy case demonstrated that it is enough to use data distance in case of noisy data to 

optimize the alpha parameter as the algorithm gave similar output in the data space, spectrum 

space or a combination of both. With the above alpha optimizing algorithm, it is certain that the 

H-LSQ-FT Method will exhibit a significant improvement in its noise reduction capabilities. 

There is an important new feature of the inversion-based Fourier Transformation 

method (H-LSQ-FT and 2D H-LSQ-FT), in that, the measurement array or field survey should 

not be at equal intervals. With the advancement in survey equipment that incorporates the 

Global Positioning System, a random field survey has been made possible. We tested the H-
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LSQ-FT and the 2D H-LSQ-FT on synthetic and field data sampled at equidistant and non-

equidistant intervals. The out maps showed the efficiency of the inversion-based Fourier 

Transformation method in processing randomly acquired data. This new feature will go a long 

way to ease geophysical field surveys as field measurements are not necessary to be taken on 

an equal grid, reducing the ensuing cost of geodetic related works in planning a geophysical 

field survey. In this thesis, it has been adequately demonstrated that the inversion-based Fourier 

transformation algorithm can be effectively used in processing data set collected in non-

equidistant (even in random walk) measurement geometry synthetic and field data. 
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