
LOCAL INVERSION OF DIRECT PUSH LOGGING DATA BY INVASIVE WEED 

OPTIMIZATION 

Armand Abordán1,2 
1PhD student, 2Assistant research fellow 

1Department of Geophysics, University of Miskolc, 3515 Miskolc-Egyetemváros, 

Hungary 
2MTA-ME Geoengineering Research Group, University of Miskolc, 3515 Miskolc-

Egyetemváros, Hungary 

 

ABSTRACT 

A global optimization based inversion approach is presented for the interpretation 

of direct-push logging data. The dataset consists of natural gamma-ray intensity (GR), 

resistivity (RES), bulk density (DEN) and neutron-porosity (
NΦ ) logs. By inverting this 

dataset, sand, clay and water content of shallow structures can be estimated and gas 

volume is derived from the material balance equation. By solving the local inversion 

with invasive weed optimization (IWO) rather than the traditionally used least squares 

method, the start model dependence of the procedure can be highly reduced. 

1. INTRODUCTION 

For the in situ investigation of shallow unconsolidated structures cone penetration 

tests (CPT) can be effectively applied. It is mainly used to gather information on the soil 

type and stratification. A technology was developed in Hungary [1], the so called 

engineering geophysical sounding (EGS) that can also measure gamma-ray intensity, 

bulk density, neutron porosity, resistivity and also the well-known parameters, cone 

resistance and sleeve friction. The method can be effectively used to solve several kind 

of problems such as mapping contaminations, assessment of environmental risks, 

investigation of dams and studying water resources. From EGS logs, one can get 

quantitative information about the composition of shallow unconsolidated sediments, 

such as clay content, porosity, and water content. Most methods for processing EGS data 

is adopted form oilfield well logging. These include deterministic, local and interval 

inversion methods and factor analysis [2] [3] [4] [5]. 

In the frame of local inversion of EGS data, the petrophysical parameters are 

determined for each measured depth point separately using only the data collected in that 

given depth point [2]. This is superior to deterministic methods, since deterministic 

approaches usually use only one measured log for the estimation of a given petrophysical 

parameter while in inversion procedures, all logs are processed simultaneously. 

 



2. LOCAL INVERSION OF EGS DATA 

 

The first step is the construction of the vector of model parameters. In this paper, 

the model is built up of clay (Vcl), sand (Vs), and water (Vw).  
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where T stand for transpose. The volume of gas (Vg) is determined from the linear 

combination of the model parameters as 

 

  wsclg 1 VVVV  . (2) 

 

The model parameters in Eq. 1 are the unknowns of the inversion procedure. For 

the calculation of theoretical logs, we have to define the response equations that connect 

the model parameters to the measured data. The equations for GR, gamma-ray intensity 

(kcpm), DEN, bulk density (g/cm3) and 
NΦ , neutron-porosity (v/v) are based on Drahos 

[2] and RES, resistivity (ohmm) is from De Witte [6] 
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where rock constituents and pore fluids are cl (clay), s (sand), w (water) and g (gas). 

Parameters a, m and n are the Archie’s parameters, i.e., tortuosity factor, cementation 

exponent and saturation exponent, respectively. These so called zone parameters are 

fixed during the inversion procedure. The log data calculated by the above equations are 

put into a vector  
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and the measured data is also put into a vector  
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Then these two vectors are compared and their RMS error is minimized to find 

the optimal values of the model vector. This problem is traditionally solved by the least 

squares method [7], but in this paper a different approach is presented. The distance 

between )(cd


 and )(md


is minimized by a global optimization method called invasive 

weed optimization [8]. 

 

3. LOCAL INVERSION OF EGS DATA BY INVASIVE WEED OPTIMIZATION  

 

Invasive weed optimization is a nature inspired algorithm that is based on the 

colonization of invasive weeds. The algorithm itself is very simple but very effective, 

first, a population of weeds need to be created. Then this population is randomly spread 

across the entire search space. Every individual of the population represents a solution 

of the optimization problem.  

Then to mimic natural selection, the individuals of the population are allowed to 

produce seeds based on the worst and best cost of the whole population and based on 

their own cost. The individual with the best cost produces the most seeds and the one 

with the worst cost produces the least number of seeds. The number of produced seeds 

decreases linearly from the best individual to the worst. The maximal and minimal 

number of seeds to be produced by the individuals is defined by the user. 

The produced seeds are randomly spread across the search space using normally 

distributed random numbers with mean equal to zero but with varying variance. This 

ensures that the seeds will be placed near the parent weed.  The standard deviation of the 

function is decreased according to Eq. 9 in the iteration process to guarantee that the 

probability of placing a seed in a distant area decreases nonlinearly. This condition 

ensures that individuals with better cost are grouped and the ones with worse cost are 

eliminated over time 

 

 
finalfinalinitialn

n

iter
q

qq
 


 )(

)(

max

max , 
 

(9) 

 

where qmax is the maximum number of iteration steps, iter  is the value of the standard 

deviation in any given iteration step, q is the current iteration step, n is the nonlinear 

modulation index, initial  is the initial value of standard deviation and final  is the value 

of standard deviation at the last iteration step. 

To limit the number of individuals, a pre-defined maximum population, Pmax is 

defined. When this population is reached in the iteration process, the individuals are 

allowed to reproduce once more and then are ranked based on their costs. The ones with 

better cost survive and can reproduce in the next iteration step again and the worst 



individuals are eliminated. This continues until the last iteration step is reached and the 

individual with the best cost is considered as the optimal solution of the problem. 

The energy function to be minimalized by the IWO algorithm is defined as 
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where N is the number of data in one depth point. This function is minimized separately 

for each depth point and also characterizes the distance between the measured and 

calculated logs in percent.  

 

4. INVERSION RESULTS 

 

The IWO controlled local inversion method presented in this paper is tested on 

real EGS data measured in Bátaapáti, Hungary. The penetrated structures are loessy sand 

and loose clay. The dataset consists of natural gamma-ray intensity (GR), bulk density 

(DEN), neutron-porosity (
NΦ ) and resistivity (RES) logs measured in every 0.1 m for 

206 depth points. By inverting this dataset, the model parameter vector, the volume of 

clay (Vcl), sand (Vs), and water (Vw) can be estimated along the penetrated structures. 

This is done by minimizing the energy function defined in Eq. 10 by the detailed 

IWO algorithm. First, the control parameters of IWO need to be set. All three model 

parameters are allowed to take values from 0 to 1. This shows that the inversion method 

does not need a specific start model to function properly. The initial population of 15 

weeds is then generated, and the population is limited at 30 individuals. The weed with 

the worst cost produces 1 seed per iteration, and in a linearly increasing manner, the plant 

with the best cost produces 8 seeds. Equation 9 controls the placement of generated 

seeds, initial is set to 0.1 and final  is 0.001 and the n, nonlinear modulation index is set 

to 2. Then the algorithm runs thirty iterations separately for each depth point and then 

the individuals of the population with the best cost for each depth point is accepted as 

the optimal solution of the problem. An example of the decrease of the objective function 

defined in Eq. 10 with the iteration steps is show in fig. 1. Running the inversion process 

for all depth points took less than 10 seconds. 



 
Fig. 1 

Decrease of the objective function at the 206th measured depth point 

 

Figure 2 shows the calculated (dashed line) and measured well logs (solid line) 

estimated by the local inversion procedure. It can be seen that the fit between most of 

the logs is fairly good, the mean value of the objective function for all depth points is 

4.26 %. 

 
Fig. 2 

The calculated (dashed line) and measured well logs (solid line) 



Figure 3 shows the estimated model parameters with depth, i.e., the volume of clay (Vcl), 

sand (Vs), and water (Vw) of the investigated unsaturated formations. 

 
Fig. 3 

The estimated model parameters by the IWO assisted local inversion of EGS data 

 

5. CONCLUSIONS 

 

The presented local inversion of EGS data solved by invasive weed optimization 

is very effective. For 206 data points it runs for less than 10 seconds, and delivers an 

average data distance of 4.26 % considering all data points. It does not require a specific 

starting model, as all unknown variables are allowed to take any value from 0 to 1. As a 



next step, I intend to combine this method with a linearized inversion method, and thus 

the estimation errors could be calculated as well. 

 

ACKNOWLEDGMENT 

  

The described study was carried out as part of the EFOP-3.6.1-16-2016-00011 

“Younger and Renewing University – Innovative Knowledge City – institutional 

development of the University of Miskolc aiming at intelligent specialisation” project 

implemented in the framework of the Szechenyi 2020 program. The realization of this 

project is supported by the European Union, co-financed by the European Social Fund. 

 

The author is also grateful for the ELGOSCAR-2000 Ltd. for the data used in this study.  

 

REFERENCES 

 

[1] Fejes I. and Jósa E. 1990. The engineering geophysical sounding method. 

Principles, instrumentation, and computerised interpretation. In: Geotechnical 

and environmental geophysics, Environmental and groundwater, Vol. 2 (ed. S.H. 

Ward), pp. 321–331, SEG, ISBN 978-0-931830-99-0. 

[2] Drahos D. 2005. Inversion of engineering geophysical penetration sounding logs 

measured along a profile. Acta Geodaetica et Geophysica 40, 193–202. 

[3] Szabó N.P. 2012. Dry density derived by factor analysis of engineering 

geophysical sounding measurements. Acta Geodaetica et Geophysica 47, 161–

171. 

[4] Szabó N.P., Dobróka M. and Drahos D. 2012. Factor analysis of engineering 

geophysical sounding data for water saturation estimation in shallow formations. 

Geophysics 77, (3), WA35–WA44. 

[5] Balogh G.P. 2016. Interval inversion of engineering geophysical sounding logs. 

Geosciences and Engineering, Vol. 5, No. 8, pp. 22-31. 

[6] De Witte L. 1955. A study of electric log interpretation methods in shaly 

formations. Petroleum Transactions of the AIME 204, 103–110. 



[7] Menke W. 1984. Geophysical data analysis: Discrete inverse theory. Academic 

Press, ISBN 978-0-12-490920-5. 

[8] MEHRABIAN, A. R., & LUCAS, C.: A novel numerical optimization algorithm 

inspired from weed colonization. Ecological Informatics, 2006. 1, 355–366. 


