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5 Conclusions

Any point in the Euclid plane corresponds to an elliptic complex number in nature, which
combines the x and y coordinates as a whole. Based on the consideration, the planar coor-
dinate transformation model in the complex field is constructed. The model is more concise
than the conventional transformation model in the real number field. In the case of complex
transformation model, the conventional least squares is invalid. To estimate the complex
transformation parameter, the contribution introduces the complex least squares and presents
the complex Gauss-Jacobi combinatorial algorithm. The two approaches are employed to a
simulative and an actual case study and the result indicate that the complex least squares is a
correct and efficient least squares in the complex number field, and can obtain the identical
estimation as the least squares for the real transformation model. Unfortunately, the complex
least squares is not immune from the gross error as the conventional real least squares. In
essence, the conventional real least squares is a special case of the complex least squares,
which can be easily found by comparing Eq. (18) and (47), and Eq. (47) is capable of ex-
tending to the form considering the weight matrix of observation vector. On the contrary,
the complex Gauss-Jacobi combinatorial algorithm is verified as a good robust estimation.
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Abstract In our previous paper (Dobrdka et al. Acta Geod Geophys Hung 47(2):185-196,
2012) we proposed a new robust algorithm for the inversion-based Fourier transformation. It
was presented that the Fourier transform and its variants responds very sensitively to any little
measurement noise affected an input data set. The continuous Fourier spectra are assumed
as a series expansion with the scaled Hermite functions. The expansion coefficients are
determined by solving an over-determined inverse problem. Here, we use the new Steiner’s
weights (previously called the weights of most frequent values or abbreviated as MFV),
where the scale parameter can be determined in an internal iteration process. This method
results a very efficient robust inversion method in which we calculate the Steiner weights from
iteration to iteration into an IRLS procedure. The new method using the Steiner’s weights is
also numerically tested by using synthetic data.

Keywords Inversion-based Fourier transformation - IRLS method - Cauchy noise - Steiner
weights - Noise reduction capability

1 Introduction

In geophysical interpretation it is always an important task to reduce the influence of data
noises. To do this in the field of geophysical inversion various methods has been developed.
Itis well-known from inverse problem theory that simple least square methods give optimal
results only when data noises follow Gaussian distribution. The practice of geophysical
inversion shows that the least square solutions are very sensitive to sparsely distributed large
errors, i.e. outliers in the data set and the estimated model parameters may even be completely
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non-physical. More generally, the distribution of the errors in the measured data is seldom
Gaussian so that the use of the least squares method (LSQ) cannot be optimal.

There are various ways to address the question of the statistical robustness. One of the most
frequently used methods in robust optimization is the least absolute deviation (LAD) method.
In this case L norm is used to characterize the misfit between the observed and the predicted
data. The inversion with minimization of the L; norm gives more reliable estimates when a
small number of large errors contaminate the data. LAD inversion can be numerically realized
by using linear programming or (after Scales et al. 1988) applying iteratively reweighted least
squares method (IRLS). Another possibility is the use of the Cauchy criterion. In this case
the Cauchy distribution of data noise is assumed. Cauchy inversion is also frequently used
in the geophysical inversion as a robust optimization method (Amundsen 1991). The IRLS
algorithm involving Cauchy weights is a very useful procedure, but it has got a problem that
the scale parameter is to be a priori given. This difficulty was elegantly eliminated by Steiner
(1988) who derived the scale parameters from the real statistics of the data setin the framework
of the most frequent values method (MFV). It was first proved in the international literature
by Dobréka et al. (1991) that the MFV-weights calculated on the base of Steiner’s method
results in a very efficient robust inversion method by inserting them into an IRLS procedure.

In a previous paper (Dobrdka et al. 2012) we published an improved algorithm for treat-
ing the Fourier transformation as inverse problem. It was shown that the continuous Fourier
transform and its variants the discrete Fourier transform (DFT) and the fast Fourier transform
(FFT) algorithms respond very sensitively to any little measurement noise affected the input
data set. To address this problem we formulated the Fourier transformation as an overdeter-
mined inverse problem. An essential step of this approach is the use of a special discretization
of the real and imaginary part of the spectrum. Following a new inversion strategy developed
at the Geophysical Department of the University of Miskolc as discretization tool we used
series expansion. As basis functions we used Hermite functions which gave us the advantage
that the elements of the Jacobi’s matrix can be calculated by means a simple explicit formula.

In this paper we further develop the previously published algorithm (Dobréka et al. 2012)
by inserting Steiner weights (instead of Cauchy ones) into the IRLS based inversion Fourier
transform method.

2 Theoretical background

For the one-dimensional continuous Fourier transform we use the formula
o0

U(w) = u(t)e /“ldt, t))

f

where ¢ denotes time, w is the angular frequency and j is the imaginary unit. The frequency
spectrum U (w) is the Fourier transform of a real valued time function u(¢) and it is gener-
ally a complex valued continuous function. By the means of the inverse Fourier transform
formulated hereunder

u(t) = \/;_”/U(w)ej“”dw, )

we canreturn from the frequency domain to the time domain. In defining the Fourier transform
as an inverse problem, the frequency spectrum U (w) should be described by a discrete
parametric model. In order to satisfy this expectation, letus assume that U (w) is approximated
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with sufficient accuracy by using a finite series expansion

M
U) = Bi¥i(w), 3)
i=1
where the parameter B; is a complex valued expansion coefficient and W; is a member of an
accordingly chosen set of real valued basis functions.

Using the terminology of (discrete) inverse problem theory, the theoretical values of time
domain data can be given by the inverse Fourier transform

00
- P l j
ytheor ) = u/t(lzem — _Z_n / U(a))E.wakdw, 4)
—o0

where 7 is the k-th sampling time. Inserting the expression given in Eq. (3) one finds that

the()r ~ / (Z B, (a)))e""’*dw = Z B; / i (w)e! % dew. 4)

i=1

Let us introduce the notation

o0

Gri = / Wi (w)e! ™ dw, (©6)

-0

where Gy ; is an element of the Jacobi’s matrix of the size (N is the number of time domain
data and M is the number of unknown expansion coefficients). It can be noted, that the
Jacobi’s matrix is the inverse Fourier transform (in ¢t = t;) of the W; basis function.

After this step, the theoretical values can be written in the linear form

the(}r z B; Gk ;. (7)

i=l

The parametrization of a model is always an important step in constructing an inversion
algorithm. As a frequency spectrum is defined over the interval (—oo, 00) the choice of a
set of basis functions defined over the same interval would be advantageous. In addition, the
use of a set of orthonormal functions for the series expansion is generally prosperous to the
parametrization of the model. In order to fulfil these requirements, we have chosen the set of
scaled Hermite functions, especially because they are square-integrable (which ensures the
existence of their Fourier transform).

Following the algebra presented in our previous work (Dobrdka et al. 2012) let us consider
the basic formula of the scaled Hermite polynomials and Hermite functions. The Rodriguez
formula for scaled Hermite polynomials takes the form

d n
(@, @) = (1)’ (@) e ®
and can be generated by the recursion formula
hnyi(@, @) = 2wahy (0, @) — 2nah, (0, @), ©
where « is the scale factor and ho(w, @) = 1, hj(w, ) = 2aw (Grobner and Hoffreiter

1958). The normalizing equation is
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00
aw? T 0, n#m

/ e 2 hp(w, o) hpy(w,x)do = \/5(201)"”!5;“", Sum = [ 1, n=m (10)

—00

and the scaled Hermite functions can be defined as

2
oW’
e 7 hy(w, @)

Hy(w,a) = (11
[/En@ay
The normalizing equation in case of the modified (scaled) Hermite function is
rd 0 #*m
, n
/ Hy(w, @) - Hy(w, @)dw = §ym, Sum = [ 1. pe=m " (12)

=00
Expanding the spectrum by means of the modified Hermite functions, in accordance with
Eq. (6) the elements of the Jacobi’s matrix represent the inverse Fourier transforms of the
H, (w, ) basis functions

o0
Gin = —% / Hy(w, @) - e/ dw. (13)
—0o0
It was proved (Dobroka et al. 2012) that
1 . 1. t
Gmaﬁm%Mwa%m%@ba- (14)

This is a very important result in further developing the inversion-based Fourier transform
method because the Jacobi’s matrix can be produced quickly, as the procedure do not require
integration.

3 IRLS algorithm with the use of Steiner weights

In accordance with Eq. (7) the theoretical data can be calculated as a linear expression of
the expansion coefficients using the easily calculated elements of the Jacobi’s matrix. The
general element of the deviation vector can be given in the following form

e = uZleasured _ u;{hear. (15)

If the measured data set contains Gaussian noise, the minimization of the L, norm of the
deviation vector is applied. This is the case of the LSQ when

N
B =3¢ (16)
k=1
is minimized resulting in the well-known set of the normal equations
GTGB' g7 I}measured_ A7)

By solving these normal equations we can give an estimate for the complex expansion
coefficients, and both the real and imaginary parts of the LSQ estimated Fourier transform
(LSQ-FT) can be calculated at any frequency by using
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Uestimated () = i Biestimared W, (w). (18)
=l
It is well-known that the LSQ gives optimal results only in the case when the noise
contaminating the data follows Gaussian distribution. In more general cases other norms of
the deviation vector are used. In order to define a robust inversion algorithm, the minimization
of the weighted norm

N
Ey =) ue} (19)
k=1
with the so-called Cauchy weights
- (20)
Wy = ———
‘ o2+ e,%

is suggested (here o2 is an accordingly chosen positive number). Using this norm for the

solution of inverse problems provides reliable results even if the input data sets contain
outliers (Dobrdka et al. 2012).

There is a problem with inversion procedures involving Cauchy weights: the scale para-
meter should be a-priori given. This difficulty can easily be solved by using Steiner weights
(Steiner 1988). In the framework of Steiner’s method (previously called the method of most
frequent values or abbreviated as MFV) the scale parameter o2 can be determined in an
internal iteration loop. In the (j + 1)-th step of this procedure the 812» +1 (Steiner’s scale factor

called dihesion) can be calculated in the knowledge of sjz as

@n

27
N 1
k=1 sz—i-e;

where in the O-th step the o starting value is given as

3
&y = 7 (émax — €min) - (22)

It can be seen that the above procedure derives the scale parameter from the data set (deviation
between measured and calculated data). The stop criterion can easily be defined by experience
(for example, a fixed number of iterations). After this the Steiner weights are calculated by
using the (Steiner’s) scale parameter given in the last step of the internal iterations having

the form

g2

Wy = ———.
£2+e,%

(23)
In the case of Steiner weights the misfit function given in Eq. (19) is non-quadratic (because
e) contains the unknown expansion coefficients) and so the inverse problem is nonlinear
which can be solved again by applying the method of the IRLS (Scales et al. 1988). In the

-0
framework of this algorithm a O-th order solution B( ) is derived by using the (non-weighted)
LSQ method and the weights are calculated as

&2

© _
W= )2
&2 4+ (ek )

24
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with
e = peasired — O (25)
where
M
ud =" BGu. (26)
i=l

In the first iteration the misfit function
i 2
£ = > u (") @7
k=1
is minimized resulting in the linear set of normal equations

GTw(O)Gé(l) — GTW(O)ﬁmezzxured (28)
of the weighted LSQ where the W© weighting matrix is of the diagonal form

0 0
w® = wd. 29)

This procedure is repeated giving the typical j-th iteration step

GTW(j_l)GE(j) — GTwU—Dymeasured (30)
with the WY~ weighting matrix
j—1 =
W U =w @31)

(In these steps the normal equation is linear, because the weights are always calculated in a
previous step. Here we note that each step of these iterations contain an internal loop for the
determination of the Steiner’s scale parameter). This iteration is repeated until a proper stop
criterion is met.

4 Numerical results

In order to test the noise rejection ability of the robust inversion-based Fourier transform
using Steiner weights (S—-IRLS-FT) we generated a data set by means of the formula

2
u(t) = e~ T cos (anot’) , t'=10¢—-05), fo=2Hz, —-1<r=<1, (32)

which is known as a Morlet wavelet, frequently used in seismic data processing. The discrete
samples were calculated equidistantly in 401 points ranging over the time interval of [—1,
1]. The time domain and the frequency domain representations of the noiseless signal can
be seen in Figs. 1 and 2. Instead of the angular frequency w the frequency f was used for
scaling the axis of abscissa of the Fourier spectrum (calculated by DFT) in Fig. 2.

It was demonstrated in our previous paper (Dobréka et al. 2012) that the DFT is very
sensitive for noises following non-Gaussian distribution. This is especially true in case of
data set contaminated by Cauchy-distributed noise. For testing the S-IRLS-FT algorithm we
generated a noisy data set by adding random noise following Cauchy distribution (Fig. 3).

It is shown in Fig. 4 that the DFT algorithm gives a very noisy spectrum in this case.
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Fig. 4 The signal contaminated by Cauchy noise in the frequency domain (given by standard DFT)

In order to characterize the accuracy of the transformations we introduce the data distance

N
de % Z [u’l”i»"ele“"(t,‘) _ ucalculutc’d(l«i)]z (33)

=1

in the time domain and the model distance

D =

Ny

NL Z ( [Uculculuted (fl)] — Re [Un()tsele.\'s (]‘,)])2
- (34)
+;

Ny
Z (Im [Ucalculated(fl_)] —Im [Unuisele.\'x(ﬁ)])z

in the frequency domain. The distance between the noisy and noiseless datasetsisd = 0.4554.
Using (34) we find the model distance between the DFT spectrum of the noisy (contaminated
by Cauchy noise) and the noiseless data: D = 0.0457.

If we apply for the same noisy data set our S—-IRLS-FT method we get an estimated
spectrum shown in Fig. 5. It can be seen that compared to the DFT spectrum, this figure
represents sufficient improvement, which is characterized also by the model distance between
the noiseless and the noisy (given by S—-IRLS-FT) data: D = 0.0050.

It is well known that applying inverse Fourier transform for the DFT Fourier spectrum
we retrieve the noisy data set exactly. (The reason is that applying DFT or FFT we solved
well-defined inhomogeneous algebraic set of equations.) By using inversion-based Fourier
transform method we solve an over-determined set of equations and—for achieving sufficient
noise rejection—apply Steiner weights. In this case it is important to see the time domain
data set given by the inverse Fourier transform of S—-IRLS-FT spectrum. The result is shown
by Fig. 6. Compared to the noisy data set it can be seen that the new inversion-based Fourier
transform method has appreciable noise rejection capability. This is characterized by the
data distance between the noiseless and the S-IRLS—FT calculated time domain data: d =
0.0426. This noise rejection capability of the algorithm makes its application very promising
in various fields of data processing including for example the inversion based processing of
IP data (Turai 2011).
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Fig. 6 The result of the new version of the S-IRLS-FT in the time domain

5 Summary

A new inversion algorithm was proposed for a more robust inversion-based Fourier trans-
formation. For the discretization of the complex Fourier spectrum Hermite functions were
applied as basis functions. In order to increase the noise rejection capability of the algorithm
Steiner weights were implemented. In the framework of Steiner’s most frequent value method
the scale parameter of the weights are determined from the data set directly. This results in
an automatic procedure for the calculation of the weights. The algorithm of the inversion-
based Fourier transform was constructed using the IRLS procedure. The new S—IRLS—FT
algorithm was numerically tested by using synthetic data. It was proved that compared to
DFT the S-IRLS-FT method has sufficient noise rejection capability.
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