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Abstract: Multivariate statistical methods (principal component analysis, cluster analysis, 

and correlation analysis) have been applied to coastal soils of Akuse, Southeastern Ghana to 

determine heavy metal sources (Cu, Zn, Ni, Pb, Cr, Co and Ba). Thirty-four Composite soil 

samples were taken on a grid of 1km × 1km from the study area and analyzed using X-ray 

fluorescence analytical protocol. The study showed that: (i) Ni, Pb, Co and Ba had anthropo-

genic sources (ii) Zn and Cu were associated with parent materials and therefore had natural 

sources whilst (iii) Cr showed varied sources of both natural and anthropogenic. From the 

statistical mean estimation, Chromium (Cr) showed the highest mean concentration (mean = 

442.8 ± 68.658 ppm). It was followed by Barium (Ba) (mean = 261 ± 137.88 ppm) and Nickel 

(mean = 83.94 ± 59.915 ppm). Elements such as copper, zinc and Cobalt showed average 

mean values ranging from (70.45 ppm – 47.47 ppm). Significant positive correlations were 

found between all metals except Cr and Cu (with r = –0.62). Element pairs such as Cu-Ni, 

Zn-Cr, Ni-Pb, Ni-Ba, Ni-Co and Cu-Zn showed strongly positive correlation coefficient “r”, 

indicating their association in the study area. The principal component analyses (PCA) 

yielded 3 components which accounted for 84.73% of the total variance in the data set, indi-

cating that the remaining 16.38% were not explained by these components. The first cluster 

(Ni, Pb, Co, Ba) accounts for 45.75% of the total variance, the second (Cu, Zn) for 22.01%, 

the third contains only Cr and suggests both natural and anthropogenic origins. The distribu-

tion of heavy metals in the soils had been greatly affected by soil formation, atmospheric 

deposition and human activities.  
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1. INTRODUCTION 

The characteristic of soil contaminated by heavy metals is commonly influenced by 

total heavy metal contents. The study area falls within the Dangme West District of 

the Greater Accra region in Southeastern Ghana.  Although some studies have al-

ready extended to the investigation of heavy metal fractions within the Akuse area, 

it is still far from enough. These studies provided inadequate information about the 

bioavailability and toxicity of heavy metals. This study focuses on heavy metal 

sources, which is critical for the monitoring and assessment of soil contamination. 

There are two main sources of heavy metals in the soil: (i) natural background, which 
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represents heavy metal concentration derived from parent rocks; (ii) anthropogenic 

contamination resulting from application of agrochemicals, addition of organic 

amendments, animal manure, mineral fertilizer, and sewage sludge. Generally, there 

are more heavy metals in soils originated from anthropogenic sources than natural 

sources. Due to human settlement, the area of farmland in Akuse has been rapidly 

increasing. Meanwhile, agro-environmental pollution caused by chemical fertilizers 

and pesticides, waste discharges such as animal wastes, sewage irrigation, and sludge 

application are so serious. Therefore, the identification of heavy metal sources in the 

present work would offer essential information on the monitoring and assessment 

process of agricultural soils in the Akuse area. The aims of the study were: (1) to 

determine average local concentrations of some heavy metals (Cu, Zn, Ni, Pb, Cr, 

Co and Ba); (2) to define their natural and/or anthropogenic sources; (3) to identify 

their local or exotic sources causing contamination in top soils. A multivariate sta-

tistic approach using principal component analysis, cluster analysis and correlation 

analysis were adopted to assist the interpretation of geochemical data and to distin-

guish different sources of heavy metals. 
 

 

2. REGIONAL GEOLOGIC SETTINGS 

The study area (Figure 1) form part of the southeastern segment of the Trans-Saharan 

belt exposed in southeastern Ghana and adjoining parts of Togo and Benin known 

as Dahomeyide orogenic settings [1, 2, 3] precisely the Shai Hills area. The principal 

tectonic elements of the Dahomeyide orogen are: (1) the deformed edge of the West 

African Craton with its cover rocks consisting of craton verging nappes and thrust 

sheets bounded by ductile shear zones; (2) the suture zone representing the eastern 

boundary of the autochthonous West African Craton; (3) exotic rocks that form the 

granitoid gneiss complexes east of the suture zone (Figure 1). Metamorphism is gen-

erally in the amphibolite facies. Gneisses with garnet, pyroxene and scapolite occur 

among more ordinary quartzo-feldspathic, biotite and hornblende-bearing varieties. 

Eclogites (high-pressure garnet-pyroxene rocks chemically equivalent to basalt) 

have been recorded from among large masses of mafic gneisses that include amphib-

olites and pyroxenites and contain much garnet. In southeastern Ghana, the High 

Pressure mafic granulites have been referred to as Shai Hills gneiss [1], and are tec-

tonically juxtaposed with the alkaline gneiss complex in the suture zone. Rocks of 

the Shai Hills Gneiss unit are folded into west and southwest verging nappes and 

crop out in inselbergs of the Accra Plains, which include the northsouth trending 

Shai Hills. Most of the isolated hills are asymmetrical with steep, west-facing scarp 

slopes such as Krobo Hills and the prominent Osu Yongwa. Several quarries in 

Krobo, Shai Hills and in the low hills south of Shai Hills provide access to fresh 

outcrops for detailed sampling. In these quarries, the distinctive features of the rocks 

exposed are the prominent modal layering and extensive veining. The layering is 

discontinuous and consists of alternating garnet-rich and hornblende-rich zones, 

which give the rock a streaky appearance and are interpreted to be shear induced. 

The veins occur in all sizes and orientated to the tectonic layering in these rocks. 
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2.1. Geology of study Area 

Strongly metamorphosed ancient sediments occur within the study area with Daho-

meyan gneiss and schist’s occupying most of the plains cover. Basic gneiss forms a 

number of large inselbergs (isolated rocky hills) in the north and center of the area. 

Small rock outcrops are also common in the north close to the inselbergs but are rare 

in south and southeast. The eastern belt of acidic gneiss consists mainly of the 

grained metamorphosed rocks rather richer in minerals than the rocks in the western 

part and with many fewer quartz veins. The soil type is largely clayey and fine grain 

in texture. There are no known mineral deposition of commercial and economic 

value in the area, except for clays of various types occurring in different places used 

for pottery and   bricks. 

 

 

 

 

 

3. MATERIALS AND METHODS 

3.1. Sample Collection and analysis 

The sampling protocol employed in this work is soil sampling. This was selected 

based on the time and resources available, the size of the program, the indicators to 

be measured and data sources to collect information from. A total of 34 samples were 

taken by six groups. All samples were taken from precise and accurate sample points 

except E4 which deviated as a result of inaccessible point of location. Using the earth 

chisel, the samples were taken at a depth range of 50–90 cm.This was intended to 

Study 

Area 

Figure 1. Location maps showing the study area and the Dahomeyide Tectonic 

Settings, South-eastern Ghana (Attoh et al., 1997) 

.      
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remove the top soil. The samples were dried, crushed and sieved using a 108 and 

106 micrometer sieves. They were shaken continuously for three minutes producing 

finer samples. Five grams (5 g) of each sample were placed in a paper bag, labeled 

and taken to the laboratory for analyses. Pellets were prepared from the samples and 

analyzed with X-Ray Fluorescence spectrometer (XRF).  This system provided a 

complete elemental analyses and qualitative characterization. In all, 34 soil samples 

were analyzed. 

 

3.2. Statistical analysis  

Multivariate statistical analysis was performed with the aid of Microsoft excel and 

IBM statistical software SPSS version 16.0. Pearson’s correlation coefficient be-

tween the variables were calculated in the forms of matrix and used as a measure of 

similarity and relationship between the six elements. Cluster analysis has most fre-

quently been employed as a classification tool and has been used by some researchers 

as a means of representing the structure of data via the construction of dendrogram 

[4, 5, 6] or overlapping clusters [7]. Cluster analysis was also performed in order to 

evaluate the metal pollution and distinguish the sources. Between groups average 

linkage method was tested during the classifying procedure. Factor analysis, using 

principal component solution was also carried out on the data. During factor extrac-

tion, the shared variance of a variable is partitioned from its unique variance and 

error variance to reveal the underlying factor structure, thus, only shared variance 

appears in the solution [8]. Principal component analysis does not discriminate be-

tween shared and unique variance. When the factors are uncorrelated and commu-

nalities are moderate, it can produce inflated values of variance accounted for by the 

components [9, 10]. Since factor analysis only analyzes shared variance, factor analy-

sis should yield the same solution while also avoiding the inflation of estimates of 

variance accounted for [8]. Principal component analyses (PCA) is designed to trans-

form original variable into new uncorrelated variables called components. It was used 

to explain the variance observed in the data, and to understand the relationship between 

the different elements. Thus, Factor analysis is a multivariate analytical technique, 

which derives a subset of uncorrelated variables called factors that explain the variance 

observed in the original dataset [11, 12, 13]. It was used to unearth the latent structure 

of a set of variables and attempted to identify few factors that were responsible for the 

correlation among a large number of observed variables. Its application was to de-

scribe, if possible, the covariance relationship among many variables in terms of a few 

underlying, but unobservable, random quantities called factors. 
 

 

4. RESULTS AND DISCUSSION 

4.1. Correlation between total heavy metal contents 

Table 1 shows the total metal content in the soil calculated in mean values with their 

corresponding standard deviations. Chromium (Cr) showed the highest mean con-

centration (mean = 442.8 ± 68.658 ppm) followed by Barium (Ba) (mean = 261 ± 
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137.88 ppm). Table 2 shows the Pearson’s correlation coefficient of heavy metals in 

the samples. The Pearson’s correlation coefficient measures the strength of a linear 

relationship between any two variables on a scale of –1 (perfect inverse relation) 

through 0 (no relation) to +1 (perfect sympathetic relation). Moderate positive cor-

relations were found between all metals except Cr and Cu (with r = –0.62). There 

exists poorer correlation between metals such as Cu-Pb, Cu-Ba, Zn-Ba and Cr-Pb 

showing their low association in the field. This implies that the pollution sources of 

these metals has no significant effect on their chemical properties and hence are not 

closely related in the field of survey. Relatively strong positively correlated metals 

included Cu-Zn, Cr-Ni, Co-Ni, Ba-Ni, Ba-Co and Pb-Ni (Figure 3). Others such as 

Zn-Ni and Co-Cu showed weaker positive correlations. The above relations are fur-

ther showed with scattered diagrams below. 

 

 

 

Figure 2. Plot showing mean  

concentrations of heavy metals 

 

 
Table 2 

Correlation Matrix 

Elements  Cu Zn Ni Pb Cr Co Ba 

 Cu 1.000       

Zn 0.697 1.000      

Ni 0.188 0.404 1.000     

Pb 0.093 0.106 0.515 1.000    

Cr -0.062 0.216 0.672 0.011 1.000   

Co 0.435 0.327 0.646 0.504 0.196 1.000  

Ba 0.049 0.057 0.664 0.510 0.182 0.712 1.000 

 
 

Table 1 

Descriptive Statistics (ppm) 

 
Mean 
(ppm) 

Std. Deviation 
(ppm) N 

Cu 47.47 18.221 34 
Zn 57.26 13.274 34 
Ni 83.94 59.915 34 
Pb 2.14 1.028 34 
Cr 442.85 405.658 34 
Co 70.45 38.296 33 
Ba 261.13 137.880 34 

(ppm) 
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Figure 3. Correlation plots of heavy metal in the study area 

 

 

4.2. Principal Component Analysis 

Table 3 shows the Total variance explained by principal components in cumulative 

percentages whilst Table 4 shows the principal component coefficient for heavy metals 

in the Akuse area extracted in three components.  The PCA yielded 3 components 

which explained 84.73% of the total variance in the data set, indicating the remaining 

16.38% were not explained by these axes. The first component accounts for 45.75% 

of the total variance and contains Ni, Pb, Co and Ba. Component 1 showed significant 

positive load for all the heavy metals. Ni showed the highest load in this factor (load 

value 0.901). This was followed by Co, Ba, Pb, Zn, Cr and Cu respectively. Although 

Zn was not classified in this component, it showed significant loading in the compo-

nent. The metals Ni, Pb, Co and Ba were also significantly correlated (Table 2), indi-

cating that they are from the same source. 
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Table 3 

Total  variance explained by principal components 

Com-
ponent 

Initial Eigen values 
Extraction Sums  

of Squared Loadings 

Total 
% of  

Variance 
Cumulative % Total 

%  
of Variance 

Cumulative 
% 

1 3.203 45.754 45.754 3.203 45.754 45.754 

2 1.541 22.010 67.764 1.541 22.010 67.764 

3 1.187 16.963 84.726 1.187 16.963 84.726 

4 0.544 7.775 92.501    

5 0.283 4.041 96.542    

6 0.165 2.361 98.903    

7 0.077 1.097 100.000    

    

 
 

Table 4 

Principal component coefficients 

 Component 

 1 2 3 

Cu 0.444 0.817 -0.188 

Zn 0.528 0.740 0.176 

Ni 0.901 -0.184 0.308 

Pb 0.629 -0.294 -0.434 

Cr 0.456 -0.176 0.846 

Co 0.859 -0.006 -0.256 

Ba 0.757 -0.419 -0.238 

 

 

This factor suggested an anthropogenic source since Ba, Ni and Co showed a higher 

mean (Table 1) value exceeding permissible background values. The second com-

ponent accounts for 22.01% of the variance and contains Cu and Zn. The close as-

sociation of Cu and Zn shows that they are from possibly naturally related source. 

The two heavy metals were also highly correlated with r = 0.697 (Table 2) showing 

their close association in the area. The remaining metal exhibited significant negative 

loads in this component showing their disassociation with Cu and Zn in the study area. 

This accession is further explained by lower correlation values showed by Cu and Zn 

with the other heavy metals (Table 2). The third component accounts for 16.963% of 

the variance and contains only Cr (load value 0.846). This factor suggests a source of 
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mixed origins of natural and anthropogenic as chromium (Cr) showed the highest 

mean value (Table 1). 

 

4.3 Cluster Analysis 

 

H I E R A R C H I C A L C L U S T E R   A N A L Y S I S 
 

Dendrogram using Average Linkage Method 

 
 

         Average centroid distance 

       C A S E   0        5       10       15       20       25 

       Label Num +--------+--------+--------+--------+--------+ 

 

             13   ─┐ 

             34   ─┤ 

             15   ─┤ 

             11   ─┼───────┐ 

             33   ─┤       │ 

             17   ─┤       │ 

             28   ─┤       │ 

             31   ─┤       │ 

             14   ─┘       │ 

             18   ─┐       │ 

             29   ─┤       ├───────┐ 

             16   ─┤       │       │ 

             24   ─┤       │       │ 

             22   ─┼─┐     │       │ 

             23   ─┤ │     │       │ 

              6   ─┤ │     │       │ 

             20   ─┤ │     │       │ 

             21   ─┤ │     │       │ 

              3   ─┤ ├─────┘       │ 

              1   ─┘ │             ├───────────────────────────┐ 

             25   ─┐ │             │                           │ 

             30   ─┤ │             │                           │ 

              9   ─┤ │             │                           │ 

              7   ─┼─┘             │                           │ 

             10   ─┤               │                           │ 

              4   ─┤               │                           │ 

              5   ─┤               │                           │ 

             19   ─┘               │                           │ 

             27   ─────────────────┘                           │ 

             12   ─┬───────┐                                   │ 

             32   ─┘       ├───────────────────────────────────┘ 

              2   ─┬─┐     │ 

             26   ─┘ ├─────┘ 

              8   ───┘ 
 

Figure 4. 
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Of 

Samples 
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Connections and relations for interdependence among the different metals in the 

Akuse area were also established by means of cluster analysis. Hierarchical cluster 

analysis created a hierarchy of clusters which were represented in a tree structure 

called dendrogram. The dendrogram of the hierarchical cluster analysis of metal con-

tents is illustrated below (Figure 4). Dissimilarities between clusters of objects are 

defined in several ways including the maximum dissimilarity (complete linkage), 

minimum dissimilarity (single linkage) and average dissimilarity (average linkage) 

[14]. Group-average linkage (agglomerative) clustering as applied in this study eval-

uates cluster quality based on all similarities between data including pairs from the 

same cluster but self-similarities are not included in the average. Group average link-

age satisfies the reducibility principle which ensures that the procedure cannot result 

in inversion in the dendrogram representing the hierarchy [15]. It is also known to 

minimize the distortion imposed on the inter-object similarity matrix when a hierar-

chic classification is generated [16]. 

 

The results revealed four clusters of elements, the first cluster included elements that 

had previously been interpreted as anthropogenic (Ni, Pb, Co and Ba) while the sec-

ond clusters contained the natural source elements (Cu and Zn). Cr concentrations 

were represented by cluster 3. Cluster 1 ranges from 13-14 on the dendrogram, Clus-

ter 2 ranges from 1-18, Cluster 3 ranges from 19–25 with the rest scattered in cluster 

4. These group distributions also corresponded to the locations of samples. Cluster 

4 contained local abnormal points and could be neglected in analysis. Based on ear-

lier discussions, the results suggested again that Ni, Pb, Co and Ba were mainly con-

trolled by anthropogenic sources, while, Cu and Zn had natural sources. Cluster anal-

ysis gave similar results to correlation and factor analyses, enabling the identification 

of the two sources of heavy metals. Therefore, this analysis re-affirmed that the ele-

ments studied come from two different sources in the soils except Cr which has a 

mixed source. 
 

 

5. CONCLUSION 

Multivariate statistical methods applied in this study proved useful in the character-

ization of heavy metal sources in soils from Akuse area. Relatively homogenous 

groups of metals were identified, and varied sources or origins of metals could be 

distinguished based on their elemental association, level of accumulation and chem-

ical properties. Similar geochemical properties such as ionic size and radius ac-

counted for the positive correlation observed among heavy metals Ni, Cr, Co, Zn 

and Cu which belong to the transition trace elements group. Among the factors af-

fecting the distribution of heavy metals in the soil are the abundance of the element 

in the parent rock, the nature of the weathering in the study area and human activities. 

Chromium and barium showed excessively high concentrations in the study area. 

The sequences of geo-accumulation of heavy metal in a decreasing order are Cr, Ba, 

Ni, Co, Zn, Cu and Pb. 
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The study showed that: (i) Ni, Pb, Co and Ba had anthropogenic sources (proba-

bly from over use of chemical fertilizers and pesticides, industrial and discharges, 

animal wastes, sewage irrigation, etc.), (ii) Zn and Cu were associated with parent 

materials and therefore had natural sources, thus, the weathering of parent materials 

and subsequent pedogenesis due to the alluvial deposits. These elements are largely 

associated with high pressure acidic gneisses complexes scattered across the north 

and western parts of the study area.  (iii) Cr showed varied sources of both natural 

and anthropogenic. The effect of heavy metals in the soils was greatly affected by 

soil formation, atmospheric deposition and human activities. These findings pro-

vided essential information on the possible sources of heavy metals without as-

sessing their extent of pollution in the study area but would still go a long way to 

contribute to the monitoring and assessment process of agricultural soils in the area. 
 
 

ACKNOWLEDGEMENT 

I want to thank the entire lecturers and staff of the Earth Science Department (Uni-

versity of Ghana), who helped in the provision of geological equipment and assis-

tance during the field work which was exceedingly courteous and helpful. Also, my 

sincere gratitude to the entire staff of the Geological Survey Department (Accra 

branch) for their help during the preparation and analysis of samples. 

I am greatly indebted to Dr. Frank K. Nyame (University of Ghana) and Dr. 

Boamah (Geological Survey Department) for their technical advice. I would like 

to express my sincere gratitude to the academic staff, Department of Geophysics 

(University of Miskolc) for their assistance and encouragement to make this paper 

a success. 
 

 

REFERENCE 

[1]  ATTOH, K.–DALLMEYER, R.D.–AFFATON P. (1997) 

Chronological nappe assemblage in the Pan African Dahomeyide orogeny, 

West Africa. Evidence from 40Ar/39Ar mineral ages. Precambrian Research, 

Vol. 82, pp 82.  

[2]  AFFATON, P.–RAHMAN, M. A.–TROMPETTE, R.–SOUGY, J., (1991)  

The Dahomeyide orogeny; Tectonothermal Evolution and Relationships 

with the Volta Basin. Springer Berlin Heidelberg. 

[3]  CASTAING, C.–FEYBESSE, J.L–THIEBLEMONT, D.–TRIBOULET C.–CHEV-

REMONT, P. (1994)  

Palaeogeographical Reconstructions of the Pan, African/brasilianoorogen: 

Closure of an Oceanic Domain or Intracontinental Convergence between Ma-

jor blocks? Precambrian Research, 67, 327–344.  

[4]  BERTIN, J. (1967) 

Sémiologie Graphique. Paris: Gauthier-Villars. 



134                                           Daniel Oduro Boatey Nuamah 

 

[5]  Hartigan, J. A. (1967), 

Representation of Similarity Matrices by Trees, Journal of the American Sta-

tistical Association, 62, 1140–58. 

[6]  SZABÓ, N. P.–DOBRÓKA, M.–KAVANDA, R. (2013) 

Cluster Analysis Assisted Float-Encoded Genetic Algorithm for a More Au-

tomated Characterization of Hydrocarbon Reservoirs. Intelligent Control and 

Automation, 2013, 4, 362–370. 

[7]  SHEPARD R. N.–P. ARABIE (1979) 

Additive Clustering: Representation of Similarities as Combinations of Dis-

crete Over-Lapping Properties, Psychological Review, 86, 87–123. 

[8]  COSTELLO, A. B.–OSBORNE, J. W. (2009) 

Best practices in exploratory factor analysis; four recommendations for get-

ting the most from your analysis. The Pan-African Management Review, 2009, 

Vol. 12, No. 2, 131–146. 

[9]  GORSUCH, R. L. (1997) 

Exploratory factor analysis: its role in item analysis. Journal of Personality 

Assessment, 68:532-560. 

[10]  McArdle, J.J (1990). Principles versus principals of structural factor analyses. 

Multivariate Behavioral Research, 25, 81–87. 

[11]  ANAZAWA–OHMORI, (2005) 

The hydrochemistry of surface waters in andesitic volcanic area, Norikura vol-

cano, central Japan. Chemosphere, Volume 59, Issue 5, April 2005, pp. 605–

615. 

[12]  BROWN, (1998)  

Applied Multivariate Statistics in Geohydrology and Related Sciences 

Springer. New York, (1998) 

[13]  YIDANA, S. M–OPHORI, D.–BANOENG-YAKUBO, B. (2008) 

A multivariate statistical analysis of surface water chemistry – the Ankobra 

Basin, Ghana. Environ. Manag. 86, 80–87. 

[14]  CHRISTOPHER D. MANNING–PRABHAKAR RAGHAVAN–HINRICH SCHÜTZE  

Introduction to Information Retrieval. Cambridge University Press, 2008. 

[15]  F. MURTAGH (1983)  

A survey of recent advances in hierarchical clustering algorithms. The Com-

puter Journal, 26, 354–35 

[16]  A. EL HAMDOUCHI–P. WILLET (1989) 

Comparison of hierarchic agglomerate clustering methods for document re-

trieval. The Computer Journal, Vol. 32, No. 3. 

http://www.sciencedirect.com/science/journal/00456535
http://www.sciencedirect.com/science/journal/00456535/59/5
http://www.sciencedirect.com/science/article/pii/S0045653504009725#bib6
http://nlp.stanford.edu/~manning/
http://theory.stanford.edu/~pragh/
http://www.cis.uni-muenchen.de/personen/professoren/schuetze/

