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Abstract. Inversion reconstruction of 3D gravity potential based on gravity data measured 

by gravimeters, horizontal gravity gradients and curvature data measured by torsion balance 

and vertical gradients, including vertical deflection data have been obtained by our 3D 

solution. By applying this method the potential function  apart from an additive constant  

and all the first and second derivatives of this potential function (elements of the full Eötvös-

tensor) can be determined not only at points of the region covered by measurements, but 

anywhere in the surroundings of these measurement points, using the coefficients of 

expansion in a series of a known set of basis function. The advantage of this method is that 

the solution can be performed by a significantly overdetermined inverse problem.  

Computations were made for the inversion reconstruction of gravity potential at a test 

area where gravity, torsion balance, vertical gradient measurements and vertical deflection 

data were available. Gravity potential, vertical deflections and both the first and the second 

derivatives of the potential were determined for the whole area by this suggested method. 

 
1. INTRODUCTION 

There are more than 45,000 torsion balance measurements in a computer database in 

Hungary. Earlier measurements were made mainly for geophysical prospecting, but 

nowadays more efficient methods are applied in geophysics and instead of a 

geophysical application of the torsion balance measurements, geodetic applications 

have come to the front. Possibilities of geodetic applications of gravity gradients are 

continually growing [1] [2] [3] [4] [5].  

Determination of the potential function has great importance because all 

components of the gravity vector, vertical deflection and the elements of the full 

Eötvös tensor can be derived from it as the first and the second derivatives of this 

function. Now a solution of the determination of 3D potential function is given here 

as an improvement on our former solution of 2D inversion [6] and [7]. Besides 

gravity and gravity gradients, now we have integrated vertical deflection data into the 

computations. Nowadays revolutionary changes are expected in geodesy because we 

have a new system which is capable of measuring very precise vertical deflection 

data with high efficiency [8]. 
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For verification of the 3D inversion algorithm, test computations were performed 

at the south part of Csepel Island, a location where gravity, torsion balance, vertical 

gradient and vertical deflection data are available from a new model. 

 

2. THE INVERSION ALGORITHM 

Let us choose the 3D gravity potential ),,( zyxW as a series expansion into a known 

set of basis function 
PΨΨΨ ,...,,. 21

: 
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where yxy NNkNjin )1()1(  and nB  are unknown coefficients of the 

series expansion. In our investigations Legendre polynomials are applied as basis 

functions. The constant term is marked by index 1, so the possibility of I = j = k = 

1 can be precluded, because the potential is unique apart from an additive constant. 

The second derivatives of the potential Eq. (1) (the elements of the Eötvös-tensor) 

give the computed values of horizontal gradients zxW , zyW , curvature data W , 

xyW  and vertical gradients 
zzW  as 
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where the prime  denotes differentiation with respect to the argument of the basis 

function. 
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The required first derivatives for the inversion algorithm are 
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Because the potential field should fulfill the Laplace-equation 

0 zzyyxx WWWW  at each (free air) measurement point, the computed 

value of W can be written as 
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At an arbitrary measurement point ),,( PPP zyxP  the computable data based on 

Eqs. (2)‒(10) are: 
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where 1 zyx NNNM  is the number of coefficients of the series expansion, and  
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are known (computable) matrix elements at the Pth measurement point.  

The Pth element of the discrepancy vector of the measured and the computed data 

is: 
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The 
)(. P

zx

measW , 
)(. P
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measW , 
)(. P

xy

measW  and the 
)(. PmeasW  in Eqs. (29)‒(32) are 

torsion balance measurements, 
)(. P

zz

measW  in Eq. (33) are vertical gradient data, 

)(. P

z

measW in Eq. (36) are gravity values measurable by gravimeters while 
)(. P

x

measW  

in Eq. (34) and 
)(. P

y

measW  in Eq. (35) can be computed from vertical deflections. The 

first derivatives of the potential W from the vertical deflections are expressed as: 
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where U is normal potential [9], g is gravity and ,  are components of the deflection 

of the vertical. Equation (37) is equivalent to the Laplace-equation. 

Let our inverse problem be overdetermined and let the function to be minimized 

be the 2L  norm of the discrepancy vector: 
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where sN  is the number of measurements. 

Let us introduce the following vector notations for measured and computed data: 
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All of the values of 
)(i

PnA  in Eqs. (20)(28) can be written to a single coefficient 

matrix (to the so-called Jacobian): 
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and using Eqs. (11)(19) the vector of computed data takes the form of 
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The discrepancy vector of measured and computed data is: 
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and substituting this into (40) one gets  
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for the norm, where 
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sNN , the total number of measurements. 

The solution of this inverse problem is based on the system of conditions 
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resulting in the set of normal equations 
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Since this inverse problem is linear, the vector B of series expansion coefficients 

can be determined by solving the above set of equations, yielding 

 

  dGGGB
.1 measTT 

 .                 (49) 

 

So the potential function in this approximation  apart from an additive constant 

 and all of the first and second derivatives of this potential function (the elements 

of the full Eötvös-tensor) can be determined not only at points of the region covered 
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by measurements, but anywhere in the surroundings of these measurement points 

using the coefficients of expansion in a series of a known set of basis function. 

 

3. TEST COMPUTATIONS 

To verify the 3D inversion algorithm, test computations were made at the south part 

of Csepel Island in Hungary, where gravity, torsion balance (TB) and vertical 

gradient (VG) measurements have been performed, furthermore vertical deflection 

data were available from a new model [12]. Torsion balance measurements were 

made here in 1950 and 30 new measurements were made in a denser net between 

the years 2006 and 2009, supplemented by gravity and vertical gradient observations 

(supported by an earlier OTKA project managed by G. Csapó [10] [11]). The 

location of the 4 earlier torsion balance measurement points is marked by squares, 

the 30 new measurement points are marked by circles and dots, while the 21 gravity 

measurement points are marked by crosses in Figure 1. Vertical gradient data have 

been measured at 27 torsion balance stations, marked by dark dots in Figure 1. 

 

 
Figure 1 

Torsion balance stations (marked by squares, circles, and dots), gravity measurements 

(marked by crosses), and vertical gradient measurements (marked by black dots) within the 

test area. Components  and  of vertical deflections are known at each point from the Hirt-

model. 
 

Deflections of the vertical have been determined for all points in the test area by 

the Hirt-model [12]. The GGMplus (Global Gravity Model plus) is constructed as a 

composite of data: 7 years of GRACE satellite data, 2 years of GOCE satellite, the 
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EGM2008 global gravity model, 7.5 arc-sec SRTM topography and 30 arc-sec 

SRTM30_PLUS bathymetry data, and includes North-South and East-West ,  

components of deflections of the vertical. On the left and right side of Figure 2  

and  components of deflections of the vertical can be seen, respectively, in the 

GRS80 system in the test area (the isoline interval is 0.05 arcsec). 
 

 
Figure 2 

Vertical deflection components  and  within the test area from the Hirt-model. 

Contour interval is 0.05 arcsec 

 

All the known horizontal gradients Wzx , Wzy , curvature data Wxy , W , vertical 

gradients Wzz and gravity values g were used as input data, but only a part of the 

known vertical deflection values were used as input data (as points for the training 

set) for the inversion; the remaining points (points of the validation set) were used 

for validating the computational results (15 points were considered for training, and 

15 for the validation). 

Our gravity and VG measurements are exremely accurate, but unfortunately 

torsion balance measurements have less accuracy. Vertical deflections originated 

from the Hirt-model [12] are available for each point, but it is important to 

emphasize that these are not real measurements – they do not contain the fine 

structure of the field, but are simply the results of a very accurate model 

computation. Taking this into consideration, different weights were applied for the 

input data: weights of the torsion balance measurements Wzx , Wzy , Wxy , W and the 

vertical deflection data were chosen to be 1 while the weights of gravity and VG 

measurements were chosen to be 10, as was the weight of the Laplace-equation. 

In our solution, by substituting the computed expansion coefficients Bi from Eq. 

(49) into the expansion formulas (1)(9), the potential function of the gravity field 

and all of its first and second derivatives were computed for the whole test area. 

Comparing measured and computed data, we obtained practically the same 
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horizontal gradients Wzx , Wzy , curvature data Wxy , W , vertical gradients Wzz and 

gravity values from the inversion as the input data of the measurements. 

The relatively high spatial variations of gradients points to the need for high 

polinomial order in the series expansion represenation of the potential field. Our 

experience shows (similarly to our previous work [5]) that care should be taken in 

choosing the polynomial order, because when increasing its value the condition 

number of the normal equation increases rapidly. This can make parameter 

estimation (coefficients B) unreliable, with high estimation errors and strong 

correlation between some coefficients. It was earlier found that P = 18–24 can give 

a good compromise between resolution and stability [5],  and for this study P = 20 

was applied in our computation.  

From the 30 given vertical deflections 15 points were chosen as input data for the 

training set and  are marked in Figure 3 by crosses; the remaining 15 points of the 

validation set as control points are marked by triangles. Our computational results 

are summarized in Table 1, where point number of the control points and the EOV 

Y, X coordinates in [m] can be found in the first three columns; then computed and 

given  ,  components of the vertical deflections with their 
)()( Hirtcomp    

and 
)()( Hirtcomp    differences can be found in the next six columns. Contour 

plots of  and  differences can be seen in Figure 3 at the same time (the contour 

interval is 0.05 arcsec in the figure). 

 

 
Figure3 

Differences between the computed vertical deflection components by inversion and the 

given  and  determined by the Hirt-model within the test area. Points of training set are 

marked by crosses; points of validation set are marked by triangles.  

Contour interval is 0.05 arcsec  
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Table1 

Differences between computed and given vertical deflection data at the validation points 

Point 
Y 

[m] 

X 

[m] 

 (comp.) 

[arcsec] 

 (Hirt) 

[arcsec] 

 

[arcsec] 

 (comp.) 

[arcsec] 

 (Hirt) 

[arcsec] 

 

[arcsec] 

31 641416.58 194729.93 0.79 1.40 –0.61 1.62 1.97 –0.35 

34 642016.12 194732.41 1.00 1.31 –0.31 1.41 1.90 –0.50 

36 642314.85 194730.44 1.70 1.30 0.41 1.47 1.85 –0.38 

44 642015.85 194433.08 1.32 1.41 –0.09 1.80 1.90 –0.10 

48 642615.88 194432.72 0.69 1.30 –0.61 1.91 1.86 0.05 

64 642013.94 194135.08 1.24 1.39 –0.16 2.08 1.89 0.19 

66 642313.68 194131.56 1.30 1.39 –0.09 1.87 1.90 –0.03 

69 642915.90 194132.69 –0.04 1.26 –1.30 2.04 1.80 0.24 

22 641716.60 195031.40 0.33 1.29 –0.96 1.62 1.89 –0.27 

45 642166.00 194433.00 1.41 1.37 0.04 1.87 1.90 –0.03 

54 642015.10 194284.80 1.34 1.40 –0.06 1.80 1.90 –0.10 

55 642165.00 194285.00 1.15 1.41 –0.26 1.78 1.90 –0.12 

65 642164.00 194132.70 1.26 1.40 –0.14 1.86 1.90 –0.04 

77 642464.00 193983.00 1.12 1.40 –0.28 1.71 1.90 –0.19 

67 642464.00 194133.00 1.38 1.40 –0.02 1.88 1.90 –0.02 

    RMS= ±0.36  RMS= ±0.16 

 

Root mean square (RMS) values of the differences between the vertical deflection 

components computed by inversion and  and  determined by the Hirt-model can 

be found in the last row of Table 1: 63.0)(RMS   and 61.0)(RMS 

. The largest error can be seen at Point 69, which is at the eastern edge of the test 

area, the most unfavorable place for the computation (generally extrapolation is 

much more unfavorable than interpolation). If we mit Point 69, the RMS values of 

 and  decrease significantly: 72.0)(RMS  , 51.0)(RMS  . 

These results are quite good, compared with the accuracy of the measured vertical 

deflections by the QDaedalus system [8], which is about 3.01.0  . 

 

4. CONCLUSIONS 

Inversion reconstruction of 3D gravity potential has been carried out here based on 

gravity data, torsion balance and vertical gradient measurements, including vertical 

deflection data. Computations were performed for a test area where gravity, torsion 

balance, vertical gradient measurements and vertical deflection data were available. 

Using the coefficients of a seriesexpansion of the gravity potential, both the first and 

the second derivatives of this potential were determined for the whole area by joint 

inversion. 

In this study we focused on how this inversion method can be applied to the 

determination of vertical deflections. It can be seen that vertical deflections can be 

computed by this inversion method with 3.01.0   accuracy in our test area, 

which is the same as the accuracy of the vertical deflections measured by the 

QDaedalus system. Thus we have a very good possibility to compute vertical 
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deflections with suitable accuracy based on the large amount and good quality of 

gravity and gravity gradient data in Hungary. 
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6. LIST OF SYMBOLS 

Symbol Description 
)(i

PnA  matrix elements at the Pth measurement point 

nB  
coefficients of the series expansion 

d vector of computed data 

g gravity constant 

M number of coefficients of the series expansion 

N number of measurements 

),,( PPP zyxP  measurement point 

U normal potential 
),,( zyxW  gravity potential 

zxW , zyW  horizontal gradients 

zzW  vertical gradients 

W , xyW  curvature data 

ε discrepancy vector of measured and computed data 

 ,  components of the deflection of the vertical 

PΨΨΨ ,...,,. 21
 set of basis function 
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