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Gábor L. Szepesi - Zoltán Siménfalvi
Institute of Energy Engineering and Chemical Machinery, University of Miskolc

H-3515 Miskolc-Egyetemváros, Hungary
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Abstract. This paper presents a measurement and calculation method to determine the
stress relaxation function parameters of a flange gasket which has viscoelastic behavior. This
is important because it has a strong connection to the leakage of vessels.
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1. Introduction

Operation of closed systems often causes isolation problems. In this case air con-
taminants may leak into the working area or into the environment. Flange-gasket
looseness is the source of the leaking most times. This paper points out the main
cause of the leakage of a soft PTFE (polytetrafluoroethylene) covered textile gasket
between flange joints. A measurement apparatus has been created to examine PTFE
covered gaskets. With the help of this apparatus the stress and deformation in the
gasket can be measured.

2. Gasket investigation unit

The measurement unit has been created for gasket measuring is shown in Figure 1.
The main parts of the investigation unit are:

1. tension tester (load capacity: 25 kN),
2. load cell,
3. flange,
4. gasket,
5. displacement transmitter,
6. A/D converter,
7. computer.

During the measurements the flange gasket is compressed by the tension tester.
The compression stress and the gasket deformation (compressive strain) are recorded
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by the A/D logger-converter. When the stress reaches the maximum, the increment
of the stress is stopped. With this procedure we can simulate flange-joint gasket
deformation and stress relaxation.
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Figure 1. Measurement apparatus

If the gasket is not working properly leakage can occur. This happens if the gasket
parameters are not correct or the gasket is damaged. If the gasket stress cannot
reach the required value or the stress is reduced below the required value a leaking
process can start. Due to the leakage, the air contaminating mass flow spilling into
the atmosphere is determinable [1].

3. Mechanical model of flange connection

The simplified mechanical model of flange connection is shown in Figure 2. The base
load of the flange is the bending momentum. This load arises from the bolt force,
the inner pressure force and the gasket force. The flange and the gasket forces are
different in operation state and assembling state. The inner pressure forces are zero
in the assembling state. In the present case the gasket force is higher than the other.
The minimum bolt force in assembling state can be calculated by:

WA = πbGy, (1)

where b is the effective gasket width, G is the diameter of the gasket center line, y is
the minimal gasket stress.

If the applied bolt force is lower than WA (calculated with (1)) the gasket is not
working acceptably and it will leak.

In the operational state the bolt force has to be higher than in assembling state.
This force can be calculated with this equation:

WOP =
π

4
G2 P + 2πGmP, (2)
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where P is the pressure, m is the gasket parameter. This gasket parameter depends
on the material of the gasket. Table 1 shows the gasket parameter and the minimal
gasket stress for different types of gaskets:

Table 1. Typical gasket parameters and minimal stresses

Type of gasket Gasket parameter, m Gasket minimal stress, y, MPa
Rubber 0.5 - 1 0 - 1.4

PVC 1.5 1.2
PTFE 2 - 2.75 1.2 - 1.6

Rubber with textile 1.25 2.75
IT sheet 2.25 - 2.75 15 - 25

Waxed seal 2.5 - 3.5 25 - 52

The effective gasket stress depends on the bolt force, the gasket parameter, the
gasket minimal stress and of course the geometry of the flanged connection. If

Figure 2. General mechanical model of flange connection

the gasket material shows viscoelastic or viscoplastic properties, the gasket stress also
depends on the time.
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4. Generalized Maxwell Model

The material of the PTFE covered textile gasket shows viscoelastic properties. The
viscoelastic material model is described by rheological elements. The generalized
Maxwell model [2, 5], shown in Figure 3, is used for describing the material behavior
of the gasket.

Figure 3. Generalized Maxwell model

Assuming that gasket deformation is only in axial direction, there is no radial
deformation. Consequently, only volumetric stresses occur in the gasket. This linear
viscoelastic behavior is commonly using the Boltzmann superposition integral [3]

σ(τ) =

∫ τ

0

K(τ − τ ′) ∂ε
∂τ ′

∂τ ′, (3)

where K is the relaxation function, τ is the time, ε is the deformation. The relaxation
function is approximated with the following formula:

K(τ) = K∞ +K0

m∑
k=1

wke
− τ
τk . (4)

The σ(τ) stress-function is approximated with

fk(t) = A+B

m∑
j=1

wje
−t/τk , (5)

where A is the residual stress, B is the relaxation factor, wj is the weighting coefficient,
m is the number of the Maxwell elements, τk is the relaxation time of one of the
Maxwell elements.

According to the investigation results, in case of m = 3, the approximation is
suitable. The least squares method is used in the approximation process:

F =

n∑
i=1

(fki − fmi)2 → min, (6)
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where n is the number of the measuring points, fki the approximated stress-function,
fmi is the measured stress values.

Derivative of function (6) with respect to the variable A:

∂F

∂A
= 2

n∑
i=1

(fmi − fki). (7)

Derivative of function (6) with respect to the variable B:

∂F

∂B
= 2

n∑
i=1

(fmi − fki).
m∑
j=1

(wje
− ti
τj ). (8)

Derivative of function (6) with respect to the variable wk, where k=1,2,3:

∂F

∂wk
= 2

n∑
i=1

(fmi − fki)
[
Be−ti/τk

]
. (9)

Derivative of function (6) with respect to the variable τk, where k=1,2,3:

∂F

∂τk
= 2

n∑
i=1

(fmi − fki)
[
Bwk

ti
τ2k
e−ti/τk

]
. (10)

The eight nonlinear equations involve eight unknown parameters. The nonlinear
equation system in a reduced form is the following:

n∑
i=1

[
A+B

(
w1e

− ti
τ1 + w2e

− ti
τ2 + w3e

− ti
τ3

)
− fmi

]
= 0. (11)

n∑
i=1

[
A+B

(
w1e

− ti
τ1 + w2e

− ti
τ2 + w3e

− ti
τ3

)
− fmi

] [
w1e

− ti
τ1 + w2e

− ti
τ2 + w3e

− ti
τ3

]
= 0.

(12)

n∑
i=1

[
A+B

(
w1e

− ti
τ1 + w2e

− ti
τ2 + w3e

− ti
τ3

)
− fmi

] [
Be−

ti
τ1

]
= 0. (13)

n∑
i=1

[
A+B

(
w1e

− ti
τ1 + w2e

− ti
τ2 + w3e

− ti
τ3

)
− fmi

] [
Be−

ti
τ2

]
= 0. (14)

n∑
i=1

[
A+B

(
w1e

− ti
τ1 + w2e

− ti
τ2 + w3e

− ti
τ3

)
− fmi

] [
Be−

ti
τ3

]
= 0. (15)

n∑
i=1

[
A+B

(
w1e

− ti
τ1 + w2e

− ti
τ2 + w3e

− ti
τ3

)
− fmi

] [
Bw1

ti
τ21

]
= 0. (16)
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n∑
i=1

[
A+B

(
w1e

− ti
τ1 + w2e

− ti
τ2 + w3e

− ti
τ3

)
− fmi

] [
Bw2

ti
τ22

]
= 0. (17)

n∑
i=1

[
A+B

(
w1e

− ti
τ1 + w2e

− ti
τ2 + w3e

− ti
τ3

)
− fmi

] [
Bw3

ti
τ23

]
= 0. (18)

If this equation system is solved, we get the parameters of the approximation
functions. During this minimization, the following equations should be satisfied:

k∑
j=1

wk − 1 = 0→ h(X) = 0, (19)



−A
−B
−w1

−w2

−w3

τ1
τ2
τ3


≤ 0→ g(X) ≤ 0. (20)

The following constrained-extremum problem should be solved in order to simplify:

F (X)→ min,
h(X) = 0,
g(X) ≤ 0.

(21)

The relevant mathematical literature offers a lot of methods to solve (21). A
penalty-function technique [4] is used to solve the problem. The following penalty
function is used in the procedure:

Θ(X,σ) = F (X) + σ

r∑
q=1

h2q(X) + σ

c∑
y=1

(max(gy(X), 0))2. (22)

The constrained-extremum problem (21) can be converted to an unconditional ex-
tremum problem with the help of the penalty function. The Nelder-Mead procedure,
which is implemented in MATLAB, is used to solve the problem. For the σ sequence:
σk = 10k−1.

Figure 4 shows one of the approximated results.
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Figure 4. The measured and calculated stress

Measurements are made for different maximal gasket stress states. A summary of
the approximation results are shown in Tables 2-4.

Table 2. Results for 3 MPa gasket loading

No. A B w1 w1 w1 τ1 τ1 τ1 A/σmax

1 2.03 0.58 0.37 0.28 0.35 19.9 556 7454 0.77
2 1.94 0.49 0.35 0.27 0.38 40.1 634 7388 0.77
3 1.96 0.57 0.3 0.33 0.37 37 408 3765 0.74

Table 3. Results for 6 MPa gasket loading:

No. A B w1 w1 w1 τ1 τ1 τ1 A/σmax

1 4.96 1.62 0.35 0.27 0.38 72.4 918 11359 0.72
2 5.17 1.64 0.35 0.29 0.36 41.7 740 9902 0.72

Table 3. Results for 13 MPa gasket loading:

No. A B w1 w1 w1 τ1 τ1 τ1 A/σmax

1 11.36 2.34 0.41 0.26 0.33 43.9 717.5 8571 0.79
2 11.62 2.49 0.42 0.25 0.32 45.3 907 11042 0.79
3 10.7 2.31 0.41 0.27 0.33 64.3 930.3 9836 0.79
4 11.12 2.47 0.38 0.26 0.36 47.5 736.5 9137.8 0.78

In Tables 2-4 the last columns show by what percent the maximal gasket stress
decreased after the relaxation process. In the worst case (common in engineering) the
residual stress is 70 % of the maximal gasket stress. If this value does not reach the
minimal stress of the gasket, leaking may happen.
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5. Conclusion

The presented calculation and measuring method is suitable to describe the vis-
coelastic type gasket time-stress function and determine the residual gasket stress on
account of the stress relaxation process. In the future the effects of the re-loading on
the relaxation properties will be investigated.
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