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Abstract. This paper presents a reciprocal theorem for steady-state heat conduction prob-
lems. Some examples illustrate the applications of the reciprocal relation formulated. The
method applied is based on the analogy which exists between linear elasticity and heat
conduction.
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1. Introduction

Consider a 3D solid body B occupying a closed and limited region V̄ for which the
steady-state heat condition is defined. The set of inner points V is denoted by V and
the set of points on the boundary of V̄ is denoted by ∂V , V̄ = V ∪ ∂V . Point P of V̄

is indicated by the vector ~OP = p = xex + yey + zez in a given orthogonal Cartesian
coordinate system Oxyz with the unit vectors ex, ey, ez. The volume element in V
is denoted by dv and the surface element defined on ∂V is da.

The temperature difference field [7, 1] in the body V̄ is denoted by T = T (x, y, z).
Following Wojnar [7]and the thermal intensity vector field is introduced by the defi-
nition

t = −∇T , (1)

where

∇ =
∂

∂x
ex +

∂

∂y
ey +

∂

∂z
ez (2)

is the gradient operator [4, 5]. The field equations of the steady-state heat conduction
problem are the heat balance equation [1, 6]

−∇ · q + R = 0 , in V (3)

and the Fourier law of heat conduction [6, 7], which takes the form

q = K · t , (4)

and the thermal intensity vector–temperature difference field relation (1). In equa-
tions (3), (4) the dot denotes the scalar product according to Malvern [5] and Lurje [4]
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and in equation (4) K = K(x, y, z) is the heat conductivity tensor field, which is sym-
metric and positive definit [1, 7]. The distributed heat source in B is denoted by
R = R(x, y, z). On the boundary surface ∂V the heat flux q is defined at every
regular points of ∂V as

q = q(x, y, z) · n (x, y, z) ∈ ∂V , (5)

where n is the outward unit normal vector to ∂B at point (x, y, z).

We say that an ordered array s = [T, t,q] is an admissible state if T , t and q are
sufficiently smooth in V̄ and they satisfy equations (1) and (4). The admissible state
corresponds to internal heat source R and boundary surface heat flux q if equations (3)
and (5) are satisfied. The ordered array of R and q is denoted by p as p = [R, q].

2. Reciprocal theorem

Theorem 1. Let s = [T, t,q] and s̃ = [T̃ , t̃, q̃] be two admissible states of the station-

ary heat conduction in body B corresponding to the internal heat sources and surface

heat fluxes p = [R, q] and p̃ = [R̃, q̃], respectively, then we have

∫

V

t · q̃ dv =

∫

V

t̃ · q dv

= −

∫

∂V

T q̃ da +

∫

V

T R̃ dv = −

∫

∂V

T̃ q da +

∫

V

T̃R dv . (6)

Proof. The validity of equation (6) follows from the equations
∫

V

t · q̃ dv =

∫

V

t · K · t̃ dv ,

∫

V

t̃ · q dv =

∫

V

t̃ ·K · t dv ,

∫

V

t̃ ·K · t dv =

∫

V

t · K · t̃ dv ,

(7)

∫

V

t̃ · K · t dv =

∫

V

q̃ · t dv = −

∫

V

q̃ · ∇T dv =

= −

∫

V

∇ · (q̃T ) dv +

∫

V

T∇ · q̃ dv = −

∫

∂V

n · q̃T da +

∫

V

T R̃ dv =

= −

∫

∂V

T q̃ dv +

∫

V

T R̃ dv . (8)

Here, the rule for derivation of a product function and the divergence theorem have
been used. �

3. Energy theorems

In [7], Wojnar introduced the thermal energy U corresponding to a continuous
thermal intensity field t defined on V̄ by

U{t} =
1

2

∫

V

t · K · t dv . (9)
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Theorem 2. Let s = [T, t,q] and s̃ = [T̃ , t̃, q̃] be admissible states corresponding

to internal heat sources and boundary surface heat fluxes p = [R, q] and p̃ = [R̃, q̃],
respectively. Then

U{t} ≤ U{t̃} (10)

provided

−

∫

∂V

T (q̃ − q) da +

∫

V

T (R̃ − R) dv ≥ 0 , (11)

or

−

∫

∂V

q(T̃ − T ) da +

∫

V

R(T̃ − T ) dv ≥ 0 . (12)

Thus, if ∂V1 and ∂V2 are complementary surface segments of ∂V (∂V = ∂V1 ∪ ∂V2,

∂V1 ∩ ∂V2 = {∅}), then we have

T = T̃ on ∂V1

q = 0 on ∂V2

R = 0 in V











⇒ U{t} ≤ U{t̃} , (13)

or

T = 0 on ∂V1

q = q̃ on ∂V2

R = R̃ in V











⇒ U{t} ≤ U{t̃} . (14)

Proof. From the definition of thermal energy U it follows that

U{t̃} = U{t + (t̃ − t)} = U{t} + U{t̃− t} +

∫

V

t ·K · (t̃ − t) dv . (15)

On the other hand the application of Theorem 1 to the admissible states s = [T, t,q]

and ŝ = [T̂ = T − T̃ , t̂ = t− t̃, q̂ = q − q̃] were p̂ = [R̂ = R − R̃, q̂ = q − q̃] yields

∫

V

t · K · (t̃ − t) dv = −

∫

∂V

T (q̃ − q) da +

∫

V

T (R − R̃) dv

= −

∫

∂V

q(T̃ − T ) da +

∫

V

R(T̃ − T ) dv . (16)

We have

U{t̃− t} ≥ 0 , (17)

since K is a positive definite symmetric tensor field. From equations (15), (16) and
inequality relation (17) we immediately obtain the statements formulated in Theo-
rem 2. �
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Theorem 3. If the admissible states s = [T, t, q] and s̃ = [T̃ , t̃, q̃] corresponding to

p = [R, q] and p̃ = [R̃, q̃] satisfy the following conditions

R = R̃ in V , (18)

T = arbitrary constant on ∂V1 , (19)

q = q̃ on ∂V2 , (20)

where ∂V1 and ∂V2 are complementary surface segments of ∂V such that ∂V = ∂V1 ∪
∂V2 and ∂V1 ∩ ∂V2 = {∅}, then

U{t} ≤ U{t̃} . (21)

Proof. We have, according to the global heat balance equation,
∫

∂V1

q da =

∫

V

R dv −

∫

∂V2

q da ,

∫

∂V1

q̃ da =

∫

V

R̃ dv −

∫

∂V2

q da . (22)

From equations (18), (20) and (22) it follows that
∫

∂V1

(q̃ − q) da = 0 . (23)

By the use of equations (20) and (23) we can write
∫

∂V

T (q̃ − q) da = T

∫

∂V1

(q̃ − q) da +

∫

∂V2

T (q̃ − q) da = 0 . (24)

Substitution of equations (20) and (24) into relation (11) we obtain that the statement
formulated in Theorem 3 is a direct consequence of Theorem 2. �

4. Mean heat flux vector

We define the mean heat flux vector 〈q〉 corresponding to an admissible state
s = [T, t,q] and p = [R, q] as

〈q〉 =
1

V

∫

V

q dv . (25)

Theorem 4. The mean heat flux vector of the admissible state corresponding to

internal heat source field R and surface heat flux q can be expressed as

〈q〉 =
1

V

(
∫

∂V

pq da −

∫

V

pR dv

)

. (26)

Proof. Be

T̃ = α · p (27)

in equation (6) where α is a constant vector. A simple computation gives

R̃ = −∇ ·K · α in V , (28)

q̃ = −n · K · α on ∂V , (29)
∫

∂V

T̃ q da −

∫

V

T̃R dv = α ·

(
∫

∂V

pq da −

∫

V

pR dv

)

, (30)
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∫

∂V

T q̃ da −

∫

V

T R̃ dv = −

∫

∂V

Tn ·K · α da +

∫

V

T∇ ·K · α dv

= −

∫

∂V

Tn · K · α da +

∫

∂V

Tn · K · α dv +

∫

V

α · K · t dv

= α ·

∫

V

q dv . (31)

In the derivation of equation (31) we have used the rule of differentiation of product
function, divergence theorem and equation (4). Combination of equation (30) with
equation (31) gives the formula of mean heat flux vector.

We note that formula (26) can be derived only by the use of equations (3) and (5).
It is not necessary for q = q(x, y, z) in (26) to be the solution of a heat conductance
problem [2]. If q = q(x, y, z) is a solution of a steady-state heat conduction problem,
then it satisfies

∇× R · q = 0 in V (32)

where R is the inverse tensor of K (the thermal resistivity tensor [7, 1] R · K = 1,
1 is the unit tensor). The cross between two vectors in equation (32) denotes their
vectorial product according to Lurje [4] and Malvern [5]. Compatibility conditions
for q given by (32) are obtained from equations (1), (4). �

5. Heat conduction on non-homogeneous curved beam

Consider a curved beam (Figure 1) which is an incomplete torus in the 3D space.
A torus-like body is generated by the rotation of a plane figure about axis z whose
inner and boundary points are taken from the sets A and ∂A, respectively. The
domain Ā = A ∪ ∂A is bounded and called the cross-section of curved beam. The
curved beam occupies the region V̄ = V ∪ ∂V ; V = {(r, ϕ, z)|(r, z) ∈ A, 0 < ϕ < α},
∂V = A1 ∪ A2 ∪ A3, Ai = {(r, ϕ, z)|(r, z) ∈ A ϕ = ϕi (i = 1, 2) ϕ1 = 0,
ϕ2 = α}, A3 = {(r, ϕ, z)|(r, z) ∈ ∂A 0 ≤ ϕ ≤ α}, which is referred to a given
cylindrical coordinate system Orϕz. Unit vectors of the cylindrical coordinate system
Orϕz are er = ex cosϕ + ey sin ϕ, eϕ = ez × er and ez. The polar coordinates r and

ϕ are defined as r =
√

x2 + y2, tanϕ = y/x. The incomplete torus-like body (curved
beam) is isotropic and ϕ-homogeneous. This means that

K = k(r, z) 1 , (33)

where k = k(r, z) is the thermal conductivity of curved beam (incomplete torus,
0 < α < 2π), which may depend upon the cross-sectional coordinates r and z. The
following boundary-value problem of the steady-state heat conduction is analysed:

T (r, 0, z) = ϑ1(r, z) on A1 (ϑ1(r, z) is given function on A1) , (34)

T (r, α, z) = ϑ2(r, z) on A2 (ϑ2(r, z) is given function on A2) , (35)

q · n = q3(r, ϕ, z) on A3 (q3(r, ϕ, z) is given function on A3) , (36)
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z

ez

O

x

ex

ϕ = α

n

A1

A2
A3

ey

n = eϕ

y

ϕ = 0

n = −eϕ(0) = −ey

x = r cos ϕ

y = r sin ϕ

(n · eϕ = 0)

Figure 1. Incomplete non-homogeneous torus (curved beam)

furthermore R = R(r, ϕ, z) is specified in V . Our aim is to obtain the values of heat
flux resultants Q1 and Q2 which are defined as

Q1 =

∫

A1

q · n1 da = −

∫

A1

q · eϕ da , (37)

Q2 =

∫

A2

q · n2 da =

∫

A2

q · eϕ da . (38)

Here, we note (Figure 1) n = n1 = −eϕ on A1, n = n2 = eϕ on A2 and n = n3 on A3,
n3 · eϕ = 0. The global heat balance equation for the incomplete torus is formulated
as

Q1 + Q2 + Q3 − Qv = 0 , (39)

where

Q3 =

∫

A3

q3 da =

∫ α

0

(
∮

∂A

rq3 dσ

)

dϕ , (40)

Qv =

∫ α

0

(
∫

A

rR dA

)

dϕ . (41)

In equation (40), σ is the arc-length defined on the boundary curve of A. The first
equation, which we will use to determine the heat flux resultants Q1 and Q2, is
equation (39) and the second one will be derived from the reciprocal relation (6). Let
the state s = [T, t,q] be the solution of the heat conduction problem of the curved
beam specified by boundary conditions (34), (35), (36) with the prescribed internal
heat source R = R(r, ϕ, z). The second state of steady heat conduction for the curved
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beam shown in Figure 1 is given by the following equations

T̃ = Cϕ , t̃ = −
C

r
eϕ , q̃ = −C

λ(r, z)

r
eϕ ,

R̃ = ∇ · q̃ = 0 , q̃ = −C
λ(r, z)

r
eϕ · n on A = A1 ∪ A2 ∪ A3 ,

where C is a constant different from zero. It is very easy to show that
∫

∂V

T̃ q da −

∫

V

T̃R dV = C(I1 − I2 + αQ2) , (42)

∫

∂V

T q̃ da −

∫

V

T R̃ dV

= −C

(
∫

A2

λ(r, z)

r
ϑ2(r, z) da −

∫

A1

λ(r, z)

r
ϑ1(r, z) da

)

. (43)

Here,

I1 =

∫

A3

ϕq3 da =

∫ α

0

∮

∂A

rϕq3 dσ dϕ , (44)

I2 =

∫

V

ϕR dV =

∫ α

0

∮

∂A

rϕR da dϕ . (45)

Substitution of equations (42) and (43) into reciprocal relation (6) yields

Q2 = −
1

α

(
∫

A2

λ(r, z)

r
ϑ2(r, z) da −

∫

A1

λ(r, z)

r
ϑ1(r, z) da

)

+
I2 − I1

α
. (46)

Formula (46) gives the value of heat flux resultant Q2 without knowing the solution
of the corresponding 3D heat conduction problem of the incomplete torus.

6. Mean temperature

Let B be a homogeneous solid sphere. The domain V̄ occupied by B is

V̄ = {p = xex + yey + zez | p2 − ̺2 ≤ 0} ,

where ̺ is the radius of the bounding spherical surface. The following boundary value
problem of heat conduction is considered:

R(x, y, z) = R(p) is prescribed in V , (47a)

T (x, y, z) = ϑ(x, y, z) on ∂V (ϑ(x, y, z) is given function on ∂V ) . (47b)

It is obvious that equation (47b) formulates a Dirichlet’s type boundary condition.
The position vector of a point on the spherical surface ∂V is denoted by ̺. Our
purpose is to compute the mean value of the temperature field of a solid sphere without
knowing the solution of the boundary value problem determined by the prescriptions
mentioned above. We use the reciprocal relation (6). The first admissible state is the
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solution of the heat conduction problem specified by equations (47a) and (47b). The
second admissible state is given by the following equations

T̃ =
C

2
(̺2 − p2) , t̃ = Cp on V̄ , (48)

q̃ = CK · p on V̄ , (49)

q̃ = C k(̺) on ∂V R̃ = CKI in V . (50)

Here,

k(̺) =
̺ ·K · ̺

̺
defined on ∂V , KI = K · ·1 , (51)

KI is the first scalar invariant of the conductivity tensor and the double dot denotes
the double dot product of K and 1 according to Malvern [5] and Lurje [4], and we
note that K is constant tensor. Substitution of the fields of two chosen admissible
states into formula (6) gives the result

〈T 〉 =
3

4πKI̺3

[
∫

∂V

k(̺) ϑ(̺) da +
̺2

2

∫

V

R(̺) dV −
1

2

∫

V

p2 R(p) dV

]

. (52)

In equation (52), the mean temperature field 〈T 〉 in the sphere is defined as

〈T 〉 =
3

4π̺3

∫

V

T (p) dV . (53)

7. Conclusions

In this paper, a reciprocal theorem is formulated by the use of the analogy which
exists between linear elasticity and heat conduction. The formalism of applied analogy
follows Wojnar’s approach [7]. The theorems proven are analogous to those obtained
in linear elasticity theory by Gurtin [3].
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Vol. VIa/2, Mechanics of Solids II. 297–345, Springer, Berlin 1972.

2. Ecsedi, I.: Mean value and bounding formulae for heat conduction. Archives of Me-

chanics, 54(2), (2002), 127–140.

3. Gurtin, M. E.: The linear theory of elasticity. [in:] S. Flügge [Ed.], Handbuch der
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