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Abstract. On the middle surface of the shell, the displacements as well as the rotations of
the base vectors are finite, the strains are, however, considered to be infinitesimally small.
The rotation of the base vectors is described by three rotation tensors that define three
special, geometrically well identified rotations. This paper derives the three-dimensional
Green-Lagrange strain tensor and the symmetric right Jaumann strain tensor on the middle
surface.
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1. Introduction

Shell theories are two-dimensional theories that have an approximate nature with
respect to the three-dimensional theories of solid bodies. This approximate nature
arises from the special geometry of shells and from the description of the deformation
and boundary conditions of the shell-like body, which are usually expressed through
different hypotheses and neglections.

Topics related to the theories of shells seem to be always topical, especially from the
point of view of the numerical analysis of shell problems. This is well demonstrated
by the following two citations: "Shell structures may be called the prima donnas of
structures." by Chapelle and Bathe (1998, [1]), and "The modelling of shell struc-
tures represents a challenging task since the early developments of the finite element
method." by Valente et al. (2003, [2]).

The topic of this paper is related to the kinematics of non-linear shell theories
in which the middle surface of the shell has a distinguished role. This is expressed
through the description of both the deformation of the middle surface and the defor-
mations along the normal to the middle surface.
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The main goal of the present paper is to derive the Green-Lagrange and the Jau-
mann strain tensors on the middle surface of the shell. The derivation is based on
the non-linear theory of three-dimensional deformation of continuum mechanics and
on the introduction of kinematical hypotheses.

In the investigations it is assumed that the middle surface of the shell is sufficiently
smooth, quantities defined on it are continuous and continuously differentiable with
respect to the surface parameters as many times as required.

The independent variables on the middle surface of the shell in this paper are the
displacements, the rotation tensors (including the drilling rotation, i.e. the rotation
about the normal to the middle surface), and the transverse normal strain, which
represent seven independent parameters in all.

The primary goal is to derive the three-dimensional deformation gradient tensor
and the three-dimensional Green-Lagrange strain tensor on the middle surface of
the shell with the assumption that the displacements as well as the rotations of the
base vectors are finite, the strains at the points of the middle surface and across the
thickness of the shell are, however, infinitesimally small.

The finite rotations of the base vectors on the middle surface are described by three
rotation tensors. These tensors define three special rotations which are geometrically
well identified. Two rotation tensors describe the finite rotation of the base vectors
(including the drilling rotation) in such a case when the middle surface normal to,
and the tangential base vectors of, the reference middle surface are mapped into the
middle surface normal to, and the tangential base vectors of the deformed middle
surface. The third rotation tensor describes an infinitesimal rotation of the already
deformed base vectors, ensuring that the transverse shear strains be, according to our
primary goals, infinitesimally small.

Considering the above assumptions, the secondary goal is to derive the three-
dimensional, symmetric right Jaumann strain tensor on the middle surface of the
shell, utilizing the polar decomposition of the three-dimensional deformation gradient
tensor.

The third goal is to present, in an exemplary manner, the derivation of the three-
dimensional deformation gradient tensor and the Green-Lagrange strain tensor at an
arbitrary point of the shell, making use of the previous results and from the point of
view of shell theories based on the Reissner-Mindlin hypothesis.

In the majority of shell theories applying finite rotations to describe the deformation
of the shell, the rotation tensors are defined, just like in this paper, on the middle
surface. In those theories the middle surface strains can be finite or infinitesimally
small. The transverse shear strains are usually taken into account, which is not,
however, the case for transverse normal strains. In what follows, a brief review of
shell theories without completeness is given from the point of view of finite rotations.

The concept of finite rotation tensor to develop a nonlinear shell theory has been
introduced by Simmonds and Danielson [3],[4]. Wriggers and Gruttmann [5] discuss a
finite element model for shells subjected to finite rotations. A detailed analysis on the
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role of drilling rotations in non-linear shell theories has been given in the significant
papers by Ibrahimbegovich [6], Ibrahimbegovich and Frey [7],[8]. Pietraszkiewicz
[9],[10] has developed a general, geometrically non-linear shell theory using the drilling
rotations.

Wisniewski [11] investigated the rotation tensor with respect to the derivation of
the Green-Lagrange strain tensor, obtained directly from the deformation gradient
tensor, and the Jaumann strain tensor, obtained through the polar decomposition of
the deformation gradient tensor.

Brank et al. [12],[13], Ibrahimbegovich et al. [14], Brank and Ibrahimbegovich [15],
Ibrahimbegovich et al. [16], Lee and Lee [17] derived geometrically exact shell theories
without using the drilling rotations.

Atluri et al. [18] pointed out that the use of the drilling rotation as an independent
variable in shell structures with faceted joints has special significance.

Campello et al. [19] applied a geometrically exact six-parameter non-linear shell
theory to develop a shell finite element.

Bertóti [20] developed a three-dimensional non-linear shell theory using the equili-
brated stress field and the rotation field.

Aside from the above aspects, the possibilities and requirements of the application
of the finite element method are not investigated in this paper. In this respect we
refer to the papers by Parisch [21], Basar and Ding [22], Bischoff and Ramm [23],
Sansour and Kollmann [24], as well as the papers by Bucalem and Bathe [25] and
Bathe at al. [26].

Section 2 introduces the notation and gives a summary of the basic relations ap-
plied in the paper, among them the representation of the rotation tensor using the
Rodrigues formula. Section 3 introduces important assumptions with respect to the
rotation of the base vectors and the measures of strains on the middle surface, then
defines three rotation tensors and gives their geometric interpretations. Making use
of the above results, Section 4 derives the three-dimensional deformation gradient
tensor, the Green-Lagrange strain tensor and the symmetric right Jaumann strain
tensor obtained through the polar decomposition of the deformation gradient tensor.
Section 5 presents, as an example, the derivation of the three-dimensional deforma-
tion gradient tensor and the Green-Lagrange strain tensor at arbitrary points of the
shell, employing the Reissner-Mindlin hypothesis.

2. Notations. Fundamental relations

2.1. Both invariant and indicial notations of tensor analysis are used. Scalar variables
are denoted by italic normal letters. When invariant notation is applied, vector
variables are denoted by upright boldface letters, tensor variables by italic boldface
letters. The dyadic (tensorial) product has no special sign (e.g. a1 a1), the scalar
product is denoted by a dot (e.g. R · a1), the vector product is denoted by a cross
sign (e.g. a1 × a2). When indicial notation is applied, the range of Latin indices is
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1, 2, 3, the range of Greek indices is 1, 2. The usual summation convention is applied
over the repeated indices. A comma followed by an index in the right subscript denotes
partial differentiation, whereas a semicolon indicates covariant differentiation. The
so called marking indices are underlined and they do not have the range 1, 2, 3 (e.g.
em

s ). The unit tensor is denoted by I , δk
l is the Kronecker delta, ǫklm is the covariant

permutation tensor and eklm is the covariant permutation symbol. The transpose of
a tensor is denoted by a ”T” in the right superscript (e.g. R

T).

2.2. Let the shell, as a three-dimensional solid body, be denoted by (B) in the
reference configuration, and by (B) in the deformed configuration. The reference
configuration is assumed to be stress- and deformation-free. The middle surface of
the shell and its surface element in (B) are denoted by (So) and (dSo), whereas in
(B) they are denoted by (So) and (dSo).

A convected (x1, x2, x3) coordinate system is employed, where x1, x2 are the surface
coordinates on the middle surface (So). The coordinate line x3 is perpendicular to
(So) in (B) and x3 = 0 on both (So) and (So). In (B) x3 is not necessarily straight
and perpendicular to (So).

Total Lagrangian description is applied throughout this paper.

Quantities and geometrical forms in the deformed configuration are distinguished
by a bar, in the reference configuration they have no special sign.

On (So) and (So) (at x3 = 0), the value of a quantity defined at an arbitrary point
of coordinate x3 is denoted by a sign "o" in the right subscript, i.e.,

u = u(x1, x2, x3), but uo = u (x1, x2, x3 = 0).

Quantities defined only at x3 = 0 are written without the sign "o", e.g.,

aα = aα(x1, x2), or n = n (x1, x2).

2.3. The middle surface of the shell together with the basic geometrical quantities
are shown in Figure 1 (see also Subsection 5.1 and Figure 4).
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At point Po of the middle surface (So) in the reference configuration, the unit normal
vector is denoted by n, |n| = 1, the position vector is ro(x

1, x2), the covariant base
vectors are aα = ro,α and a3 = n, the metric tensor is akl = ak ·al (aα3 = 0, a33 = 1)
and its determinant is denoted by a, the curvature tensor of the middle surface is
bκλ = − aκ · a3,α , the contravariant base vectors are am, and the inverse of the
metric tensor is amn = am · an (aµ3 = 0, a33 = 1). The following relations hold:

a3 =
a1 × a2

|a1 × a2|
= n, |a3| = 1, a = det aαβ = a11a22 − a12a21, (2.1)

|a1 × a2|2 = (a1 × a2) · (a1 × a2) = a, aα = aαβaβ , a3 = a3. (2.2)

At point (P o) of the middle surface (So) in the deformed configuration, the unit
normal vector is n, |n| = 1, the position vector is ro(x

1, x2), the covariant base
vectors are aα = ro,α and a3 (it is assumed that a3 6= n ), the surface part of the
metric tensor is aαβ = aα · aβ and its determinant is denoted by a, the curvature

tensor of the middle surface is bκλ = − aκ · n,λ. The following relations hold:

n =
a1 × a2

|a1 × a2|
, a = det aαβ = a11a22 − a12a21, (2.3)

|a1 × a2|2 = (a1 × a2) · (a1 × a2) = [(a1 × a2) × a1] × a2 = a. (2.4)

2.4. Let uo(x
1, x2) = uk

o ak be the displacement field on the middle surface (So).
Then

ro = ro + uo and aα = ro,α = aα + uo,α =
(

δm
α + um

o;α

)

am (2.5)

on (So). The deformation gradient tensor is

F o = ak ak = aκ aκ + a3 a3, F o · ak = ak , (2.6)

i.e.

dro = F o · dro = F o · ak dxk = ak dxk . (2.7)

The Green-Lagrange strain tensor assumes the form

E o = Eokl a
kal =

1

2

(

F
T
o ·F o − I

)

=
1

2
[(ak · al) − (ak · al)]a

kal =

=
1

2

[

(aκ · aλ − aκλ)aκaλ + (aκ · a3)a
κa3 + (a3 · aλ) a3aλ + (a3 · a3 − 1)a3a3

]

.

(2.8)

According to (2.3)-(2.5), the unit normal vector to the middle surface (So) is

n = nm am =
1√
a

a1 × a2 =
1√
a

(a1 + uo,1 ) × (a1 + uo,2 ) . (2.9)
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Components of the normal vector n can be expressed by the components of the
gradient of displacement vector, uo,α , as:

n1 = n · a1 =
1√
a

[(a1 + uo,1 ) × (a2 + uo,2 )] · a1 = −
√

a√
a

[(

1 + u2
o;2

)

u3
o;1 − u2

o;1u
3
o;2

]

,

(2.10)

n2 = n · a2 =
1√
a

[(a1 + uo,1 ) × (a2 + uo,2 )] · a2 = −
√

a√
a

[(

1 + u1
o;1

)

u3
o;2 − u1

o;2u
3
o;1

]

,

(2.11)

n3 = n · a3 =
1√
a

[(a1 + uo,1 ) × (a2 + uo,2 )] · a3 =

=

√
a√
a

(

1 + u1
o;1 + u2

o;2 + u1
o;1u

2
o;2 − u1

o;2u
2
o;1

)

. (2.12)

2.5. Any rotation tensor R (R−1 = R
T; det|R| = 1), defined at point Po of the

middle surface (So) can be given by the Rodrigues-formula:

R = Rk
l ak al = cosϑ I + (1 − cosϑ) e e + sin ϑ e× I , (2.13)

Rk
l = cosϑ δk

l + (1 − cosϑ)ekel + sin ϑ aksεsmle
m, (2.14)

where e = e(x1, x2) = em am, |e| = 1 is the unit vector of the axis of rotation and
−π ≤ ϑ(x1, x2) ≤ π is the angle of rotation. The rotation tensor is a proper
orthogonal tensor. There exist other representations of the rotation tensor R in the
specialist literature.

The rotation tensor R rotates the arbitrary vector c into the vector

R · c = cosϑ c + (1 − cosϑ) (e · c) e + sinϑ e× c, (2.15)

while its transpose, RT, rotates c into the vector

R
T · c = c ·R = cosϑ c + (1 − cosϑ) (e · c) e− sin ϑ e× c . (2.16)

3. Finite rotations and small strains on the middle surface (So)

3.1. Let us introduce, in advance, the rotation tensors R
∗(x1, x2) and Rs(x

1, x2)
as well as the following fundamental assumptions:

1. let R
∗ rotate the base vectors ak into vectors k

∗

k by a finite rotation:

k
∗

k = R
∗ · ak, and let k

∗

3 = R
∗ · a3 = n, (3.1)

2. let Rs rotate vectors k
∗

k into vectors kk by an infinitesimal rotation:

kk = Rs · k
∗

k = Rs ·R∗ · ak , (3.2)

3. let the rotated base vectors kk and the infinitesimal strain vectors αk(x1, x2)
give the base vectors ak:

ak = kk + αk, (3.3)
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4. let α3 = εo3 k3, i.e., let the base vector a3 be given by

a3 = k3 + εo3k3 , (3.4)

where εo3 is the infinitesimal stretch in the normal direction to the middle
surface,

5. let the rotation tensor Rs, defining an infinitesimal rotation, be given by

Rs = I + ϑs es × I , (3.5)

where |ϑs| ≪ 1 holds for the angle of rotation and the unit vector of the axis
of rotation, es, is perpendicular to n:

es = eµ
s k

∗

µ = R
∗ ·

(

eµ
s aµ

)

= R
∗ · es; es = eµ

s aµ . (3.6)

In the following Subsections 3.2–3.6, we investigate first the rotation tensor R
∗

that fulfills condition (3.1)2, then, in view of the results of this investigation, R
∗ is

obtained by the (scalar) product of two rotation tensors (R∗ = R2 ·R1), and the
geometrical interpretation of these two rotation tensors is given. Next, in Subsection
3.7, the description of the rotation tensor Rs defined in (3.5) is detailed.

3.2. For a given n, we are looking for a rotation tensor R
∗ (the angle of rotation

ϑ∗ and the axis of rotation e∗) that satisfies assumption (1) with equation (3.1)2 :

k
∗

3 = R
∗ · a3 = cosϑ∗a3 + (1− cosϑ∗)e∗3e

∗ + sinϑ∗e∗ × a3 = n = npa
p.

The solution satisfies the following scalar equations:

ap ·R∗ · a3 = cosϑ∗a3p + (1 − cosϑ∗) e∗3e
∗
p +

√
a sin ϑ∗eps3e

∗s = np,

which, after inserting e∗p = apq e∗q, can be written as

(1 − cosϑ∗) e∗3
(

a11e
∗1 + a12e

∗2
)

+
√

a sin ϑ∗e∗2 = n1, (3.7)

(1 − cosϑ∗) e∗3
(

a21e
∗1 + a22e

∗2
)

−
√

a sin ϑ∗e∗1 = n2, (3.8)

cosϑ∗ + (1 − cosϑ∗) (e∗3)
2

= n3. (3.9)

With components np given and, in addition, with an e∗3 chosen, equation system (3.7)-
(3.9) has a unique solution for ϑ∗, e∗1 and e∗2 (the trivial solution of ϑ∗ = 0 is not
considered). Indeed, from (3.9) it immediately follows that

cosϑ∗ =
n3 − (e∗3)

2

1 − (e∗3)
2

, (3.10)

whereas e∗1 and e∗2 can be obtained from the transformed equations (3.7)-(3.8), using
the Cramer-rule:

(1 − cosϑ∗) e∗3a11e
∗1 + [(1 − cosϑ∗) e∗3a12 +

√
a sin ϑ∗] e∗2 = n1

[(1 − cosϑ∗) e∗3a21 −
√

a sin ϑ∗] e∗1 + (1 − cosϑ∗) e∗3a22e
∗2 = n2

.
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The determinant of this equation system is d = a
[

(1 − cosϑ∗)2 (e∗3)
2 + sin2 ϑ∗

]

, and

its solution reads:

e∗1 =
(1 − cosϑ∗) e∗3n

1 − 1√
a

sin ϑ∗n2

(1 − cosϑ∗)
2
(e∗3)

2
+ sin2 ϑ∗

, e∗2 =
(1 − cosϑ∗) e∗3n

2 + 1√
a

sinϑ∗n1

(1 − cosϑ∗)
2
(e∗3)

2
+ sin2 ϑ∗

.

(3.11)

Selection of the possible values for e∗3 is restricted by the fact that −1 ≤ cosϑ∗ ≤ 1,
i.e. after taking into account (3.10),

−1 ≤ n3 − (e∗3)
2

1 − (e∗3)
2

≤ 1.

This means that, beside the evidently satisfied conditions |n3| ≤ 1, condition

e∗3 ≤
√

1 + n3

2
(3.12)

should also be satisfied.

Taking into account the above constraint, for a given normal vector n of the middle
surface (So) and for a given component e∗3 of the rotation axis e∗, the rotation angle
ϑ∗ can be determined using (3.10) and the other two components e∗µ of e∗ can then
be obtained from (3.11).

3.3. The results of Subsection 3.2 can now be summarized as follows: For a given
normal vector n = np ap = nq aq, |n| = 1 of the middle surface (So), there exists an
infinite number of solutions to equation R

∗ ·a3 = k̄∗
3 = n for the rotation tensor R

∗.
These solutions differ from each other in one component of the unit vector e∗ of the
rotation axis, namely the component e∗3. After selecting the component e∗3 = e∗3 of
vector e∗, with satisfied constraint (3.12), equations (3.10) and (3.11) give a unique
solution for ϑ∗ and for the other two components of e∗, i.e. for the rotation tensor
R

∗. It can be pointed out that this solution satisfies the requirement |e∗| = 1.

It can also be seen that vectors R
∗ · aα = k̄∗

α, obtained with different rotation
tensors R

∗, lie in the tangent plane, perpendicular to the normal k̄∗
3 = n of the

middle surface (So), in such a way that the different vectors k̄∗
α belonging to e∗3 (to

e∗) can be rotated into each other about vector k̄∗
3 = n. This follows from the

evidently satisfied equation k̄∗
α · k̄∗

3 = aα ·R∗T ·R∗ · a3 = aα · a3 = 0.

Another important consequence of equations (3.10) and (3.11) is that for every
normal vector n, |n| = 1, there exists a finite rotation tensor with the axis of rotation
lying in the tangent plane to the middle surface (So). Let this rotation tensor be
denoted by R2 (the angle of rotation is ϑ2, the unit vector of the rotation axis is e2):

R2 = Rk
2 l aka

l = cosϑ2I + (1− cosϑ)e2e2 + sinϑ2 e2×I . (3.13)



Tensors of finite rotations and small strains on the middle surface of a shell 265

According to relations (3.10) and (3.11):

cosϑ2 = n3, sin ϑ2 =

√

1 − (n3)
2
, (3.14)

e1
2 = − 1√

a

n2

sinϑ2

, e2
2 =

1√
a

n1

sin ϑ2

= −n1

n2

e1
2. (3.15)

3.4. Making use of the results of Subsection 3.3, the rotation tensor R
∗ is obtained

first by the product of two rotation tensors: R
∗ = Rn·R2 , i.e. we apply two rotations,

one after the other, described by expression

k̄∗
k = R

∗ · ak = Rn·R2 · ak = Rn· (R2 · ak) , (3.16)

where R2 is defined by (3.13)-(3.15) and the rotation tensor Rn describes a rotation
about the unit normal n, being the axis of rotation, with rotation angle ϑ1:

Rn = cosϑ1I + (1− cosϑ1)n n + sinϑ1n×I . (3.17)

The vectors k̄∗
κ = R

∗ · aκ, rotated into the tangent plane of the middle surface
(So), can thus be obtained by rotating first the base vectors ak into vectors R2 · aκ

lying in the tangent plane, then these vectors are being rotated again in the tangent
plane about the normal n: k̄∗

κ = Rn · (R2 · ak). The vector a3 is rotated only once by
k̄3 = R2 · a3 = n, because Rn · n = n. The geometric interpretation of the described
rotations is shown in Figure 2.
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3.5. The components of the unit normal vector n can be obtained from the gradient
uo,α of the displacement vector of the middle surface (So), according to (2.10)-(2.12),
and the parameters of the rotation tensor R2 can then be computed from (3.14) and
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(3.15) as

cosϑ2 = n3 =

√
a√
a

(

1 + u1
o;1 + u2

o;2 + u1
o;1u

2
o;2 − u1

o;2u
2
o;1

)

, (3.18)

√
a sin ϑ2e

1
2 = −n2 =

√
a√
a

[(

1 + u1
o;1

)

u3
o;2 − u1

o;2u
3
o;1

]

, (3.19)

√
a sin ϑ2e

2
2 = n1 = −

√
a√
a

[(

1 + u2
o;2

)

u3
o;1 − u2

o;1u
3
o;2

]

. (3.20)

3.6. Let us introduce, secondly, the rotation tensor

R1 = cosϑ1I + (1 − cosϑ1)a3a3 + sinϑ1 a3×I (3.21)

on the middle surface (So). It can be pointed out (see Appendix A) that

R
∗ = Rn · R2 = R2 ·R1, (3.22)

i.e. the following relations hold:

k̄∗
κ = R

∗· aκ = Rn·R2 · aκ = R2 ·R1 · aκ, k̄∗
3 = R

∗ · a3 = R2 · a3 = n. (3.23)

In view of equation (3.23), the finite rotation of the base vectors aκ, given by the
rotation tensor R

∗, will be described in the following by two rotation tensors, R2 and
R1. Then the base vectors k̄∗

κ = R
∗ · aκ, rotated into the tangent plane of the middle

surface (So), can be obtained in two steps: first the base vectors aκ are rotated about
a3 by angle ϑ1 into vectors R1 ·aκ lying in the tangent plane of (So), and, next, these
vectors are rotated about axis e2, lying in the tangent plane of (So), by the angle ϑ2

as k̄∗
κ = R2 · (R1 · aκ). The base vector a3 is rotated, however, only once, according

to k̄∗
3 = R2 ·a3 = n, as R1 ·a3 = a3. The geometrical interpretation of these rotations

is seen in Figure 3.
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The parameters of the rotation tensor R
∗ can be obtained from the parameters of

the rotation tensors R1 and R2, defined in (3.21) and (3.13), respectively, according
to the following expressions:

1 + cosϑ∗ =
1

2
(1 + cosϑ1) (1 + cosϑ2) ,

sin ϑ∗e∗ =
1

2
[(1 + cosϑ1) sinϑ2e2 + (1 + cosϑ2) sin ϑ1a3 + (sinϑ2e2) × (sinϑ1a3)] .

3.7. The rotation tensor Rs, describing an infinitesimal rotation, is defined by

equations (3.5) and (3.6). According to (3.2), the rotated base vectors kk and k
∗

k can
be related to each other through

kk = Rs · k
∗

k = k
∗

k + ϑses × k
∗

k = R
∗ · ak + ϑse

µ
s (R∗ · aµ) × (R∗ · ak) , (3.24)

and, in view of equation (B.1) of Appendix B, we have

kk = Rs · k
∗

k = R
∗ · (ak + ϑses × ak) = R

∗ ·Rs · ak = R · ak, (3.25)

where

Rs = I + ϑses × I ; R = R
∗ ·Rs = R2 ·R1 ·Rs. (3.26)

The resultant rotation tensor R = R2 ·R1 ·Rs has three independent parameters,
since R2 [ and the two components of its vector ϑ2 = ϑ2 e2, (ϑ2 = |ϑ2| ) ] is uniquely
defined by the displacement field uo, according to (3.18)-(3.20) (zero parameter in
number), R1 is described, according to (3.21), by the rotation angle ϑ1 (1 parameter),
and Rs is described, according to (3.25), by the two components of the vector ϑs =
ϑses

(

ϑs = |ϑs|
)

(2 parameters).

The above equations can be supplemented by the following relations for the rotated

base vectors k
∗

k: from (3.23)2 and (2.3) we have:

aκ · k∗

3 = aκ · n = 0, (3.27)

and from (3.6) and (3.27) we have:
(

es × k
∗

κ

)

· aλ = 0, since (es × k
∗

κ) ‖n . (3.28)

4. The deformation gradient, the Green-Lagrange and the Jaumann

strain tensors on the middle surface (So)

4.1. The deformation gradient tensor and its transpose are defined in (2.6) as

F o = ak ak = aκ aκ + a3 a3 and F
T
o = ak ak = aκ aκ + a3 a3 ,

where the base vectors aκ and a3 are given, respectively, by expressions (3.3) and
(3.4).

The detailed Green-Lagrange strain tensor is given by (2.8). When the different
products of the base vectors of the middle surface (So), appearing in equation (2.8)
and later on, are computed, it will be taken into account that the strain vectors αk,
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the angle of rotation ϑs as well as the stretch εo3 are infinitesimally small, according
to the assumptions introduced in Subsection 3.1. Then we can write:

aκ · aλ =
(

kκ + ακ

)

·
(

kλ + αλ

)

= kκ · kλ + kκ · αλ + ακ · kλ + ακ · αλ ≈
≈ aκλ + kκ · αλ + ακ · kλ, (4.1)

aκ · a3 = (1 + εo3)aκ · k3 ≈ aκ · k3, (4.2)

a3 · a3 = (1 + εo3)
2
k3 · k3 ≈ 1 + 2εo3. (4.3)

In obtaining (4.1) and (4.3), equation (B.2) of Appendix B has been utilized.

Taking into account (3.24) and (3.28), the product kκ · αλ appearing in (4.1) can
be written in a different way:

kκ · αλ = kκ ·
(

aλ − kλ

)

= kκ · aλ − aκλ =
(

k
∗

κ + ϑses × k
∗

κ

)

· aλ − aκλ =

= k
∗

k · aλ − aκλ = aκ ·R∗T · (aλ + uo,λ) − aκλ. (4.4)

The product aκ · a3 of (4.2) can also be modified using (3.24), (3.27) and equation
(B.1) of Appendix B:

aκ · a3 ≈ aκ · k3 = aκ ·
(

k
∗

3 + ϑses × k
∗

3

)

=
(

kκ + ακ

)

·
(

ϑses × k
∗

3

)

≈

≈ k
∗

κ ·
(

ϑses × k
∗

3

)

= aκ ·R∗T ·R∗ · (ϑses × a3) = ϑsaκ · (es × a3) = ϑs

√
a eκµ3e

µ
s .

(4.5)

4.2. The components of the Green-Lagrange strain tensor on the middle surface
(So) are thus the following:

Eoκλ = aκ · Eo · aλ =
1

2
(aκ · aλ − aκλ) ≈

≈ 1

2

[

aκ ·R∗T · (aλ + uo,λ ) + (aκ + uo,κ ) ·R∗ · aλ

]

− aκλ, (4.6)

Eoκ3 = Eo3κ = aκ · Eo · a3 =
1

2
aκ · a3 ≈ 1

2
ϑs a3 · (aκ × es) =

1

2
ϑs

√
a eκµ3e

µ
s , (4.7)

Eo33 = a3 ·Eo · a3 =
1

2
(a3 · a3 − 1) ≈ εo3. (4.8)

Components Eokl are infinitesimal.

It is noted that to compute the components Eoκλ, only the displacement field uo

and the rotation tensor R
∗ = R2 · R1 are needed. On the other hand, components

Eoκ3 depend on the rotation tensor Rs (on the rotation vector ϑs = ϑses), and
component Eo33 depends only on the stretch εo3.

4.3. The surface part aαβ = aα ·aβ of the metric tensor at point P o can be written
using (2.8) as follows:

aαβ = 2Eoαβ + aαβ .
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Taking into account that the strain components Eoαβ are infinitesimally small, the
approximate value of the determinant of the metric tensor in (2.3)2 is:

a = det aαβ = a11a22 − a12a21 ≈ a. (4.9)

4.4. The curvature tensor of the middle surface (So) reads:

bκλ = − aκ · n,λ = −
(

kκ + ακ

)

· k3,λ ≈ − kκ · k3,λ . (4.10)

4.5. The symmetric right Jaumann strain tensor, H o, can be obtained using the
polar decomposition of the deformation gradient tensor:

F o = R · (H o + I ) ,

H o = Hokl a
kal =

1

2

(

R
T ·F o + F

T
o ·R

)

− I . (4.11)

In view of (3.3) and (4.1), the components of this tensor are given by

Hoκλ = aκ ·H o · aλ =
1

2

(

aκ ·RT ·F o · aλ + aκ ·FT
o ·R · aλ

)

− aκλ =

=
1

2

(

kκ · aλ + aκ · kλ

)

− aκλ =
1

2

[

kκ ·
(

kλ + αλ

)

+
(

kκ + ακ

)

· kλ

]

− aκλ ≈

≈ 1

2

[

kκ · αλ + ακ · kλ

]

≈ 1

2
(aκ · aλ − aκλ) = Eoκλ, (4.12)

and, in addition, taking into account (4.5) as well, we obtain:

Hoκ3 = aκ ·H o · a3 =
1

2

(

kκ · a3 + aκ · k3

)

=

=
1

2

[

(1 + εo3)kκ · k3 + aκ · k3

]

≈ 1

2
aκ · a3 = Eoκ3, (4.13)

Ho33 = a3 ·H o ·a3 −1 =
1

2

(

k3 · a3 + a3 · k3

)

−1 = (1 + εo3)k3 ·k3 −1 = εo3 ≈ Eo33.

(4.14)

It can be concluded, that using the assumptions (neglections) introduced in the
previous sections, the Green-Lagrange and the Jaumann strain tensors are identical
on the middle surface (So).

5. The deformation gradient and the Green-Lagrange strain tensor at an

arbitrary point of the reference configuration (B)

5.1. Let P denote an arbitrary point on the normal (on the coordinate line x3) to
the middle surface (So) of the reference configuration (B). The base vectors and the
metric tensor at point P are:

r = r
(

x1, x2, x3
)

= ro + a3x
3, (5.1)

gκ = r,κ = ro,κ +a3,κ x3 = aκ − aα bα
κ x3 =

(

δα
κ − bα

κ x3
)

aα, g3 = r,3 = a3 = n,

(5.2)

gκλ = gκ · gλ = aκλ − 2bκλx3 + bκαbα
λ

(

x3
)2

, gκ3 = 0, g33 = 1. (5.3)
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The contravariant base vectors are denoted by gm, the inverse of the metric tensor
is gmn = gm · gn

(

gµ3 = 0, g33 = 1
)

. If the shifter is denoted by µm
k , µµ

κ = δµ
κ −

bµ
κx3, µ

µ
3 = 0, µ3

3 = 1 and its inverse is
−1
µ m

k , then the following relations hold:

gk = µm
k am, gm =

−1
µ m

k ak. (5.4)

Let P denote an arbitrary point on the coordinate line x3 of the deformed config-
uration (B). The position vector of point P and the base vectors at P are:

r = r
(

x1, x2, x3
)

= ro + h, gκ = ro,κ + h,κ = aκ + h,κ , g3 = h,3 , (5.5)

where h = h
(

x1, x2, x3
)

. The geometrical setting with an enlarged scale in the
thickness direction is shown in Figure 4. Geometrically non-linear shell theories differ
from each other in the assumptions for the form of h (for instance, in shell theories
based on the Kirchhoff-Love hypothesis, h = nx3).
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Figure 4.

As a continuation of Sections 3 and 4, the following part of this section derives
the deformation gradient and the Green-Lagrange strain tensor at an arbitrary point
P of the configuration (B), considering the relatively simple hypothesis of Reissner-
Mindlin:

h = k3 x3 = R
∗ · (a3 + ϑses × a3)x3. (5.6)

5.2. The deformation gradient and its transpose at the arbitrary point P are:

F = gk gk = gκ gκ + g3 g3, F
T = gk gk = gκ gκ + g3 g3. (5.7)
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At point P , the base vectors can be written on the basis of equations (5.5)2,3 and
(5.6) as

gκ = aκ + h,κ = kκ + ακ + k3,κ x3, g3 = h,3 = k3, (5.8)

where

k3,κ = [R∗ · (a3 + ϑses × a3)],κ = R
∗
,κ · (a3 + ϑses × a3) + R

∗ · (a3 + ϑses × a3),κ .

(5.9)

5.3. The Green-Lagrange strain tensor at the arbitrary point P is given by

E = Ekl g
kgl =

1

2

(

F
T · F − I

)

=
1

2
[(gk · gl) − (gk · gl)]g

kgl =

=
1

2

[

(gκ · gλ − gκλ)gκgλ + (gκ · g3) gκg3 + (g3 · gλ)g3gλ + (g3 · g3 − 1)g3g3
]

.

(5.10)

Assume that beside the strain vectors ακ and the angle of rotation ϑs, the derivative
ϑs,κ is also infinitesimally small. Then, using the transformations of Subsection 4.1,
the scalar product of the base vectors of configuration (B), appearing in (5.10), can
be written as

gκ · gλ =
(

kκ + ακ + k3,κ x3
)

·
(

kλ + αλ + k3,λ x3
)

≈
≈ aκλ + kκ · αλ + ακ · kλ +

(

kκ · k3,λ +k3,κ ·kλ

)

x3 + k3,κ ·k3,λ
(

x3
)2

, (5.11)

gκ · g3 = g3 · gκ =
(

aκ + k3,κ x3
)

· k3 = aκ · k3 ≈ ϑsaκ · (es × a3) , (5.12)

g3 · g3 = k3 · k3 = 1. (5.13)

Making use of (3.24), the scalar product kκ · k3,λ in (5.11) can be approximated as

kκ · k3,λ =
(

k
∗

k + ϑses × k
∗

k

)

·
(

k
∗

3 + ϑses × k
∗

3

)

,λ ≈ k
∗

κ · k∗

3,λ ,

and then we can write:

kκ · k3,λ ≈ − bκλ ≈ k
∗

κ · k∗

3,λ ≈ aκ ·R∗T · (R∗,λ · a3 + R
∗ · a3,λ ) =

= aκ ·R∗T ·R∗,κ · a3 + aκ · a3,λ , (5.14)

k3,κ · k3,λ ≈ bκµb
µ

λ ≈ k
∗

3,κ ·k∗

3,λ ≈ (R∗,κ · a3 + R
∗ · a3,κ ) · (R∗,λ · a3 + R

∗ · a3,λ ) =

= a3 ·R∗T,κ ·R∗,λ · a3 + a3 ·
(

R
∗T,κ ·R∗ · a3,κ +R

∗T,λ ·R∗ · a3,κ

)

+ a3,κ · a3,λ ,

(5.15)

In obtaining (5.12), (4.6) has also been used.

5.4. In view of the previous results, the following are the scalar components of the
Green-Lagrange strain tensor:

Eκλ = gκ ·E · gλ =
1

2
(gκ · gλ − gκλ) ≈ 1

2

[

aκλ + kκ ·
(

aλ − kλ

)

+
(

aκ − kκ

)

· kλ

]

+

+
1

2

[

aκ ·R∗T ·R∗,λ · a3 + aλ ·R∗T ·R∗,κ · a3 − 2bκλ

]

x3 +
1

2

[

a3 · R∗T,κ ·R∗,λ · a3+

+a3 ·R∗T,κ ·R∗ · a3,λ + a3 ·R∗T,λ ·R∗ · a3,κ +bµ
κ bµλ

]

(

x3
)2 − 1

2
gκλ,
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i.e.,

Eκλ = Eoκλ + E1κλx3 + E2κλ

(

x3
)2

, (5.16)

E1κλ = −
(

bκλ − bκλ

)

=
1

2

[

aκ ·R∗T ·R∗,λ · a3 + aλ ·R∗T ·R∗,κ · a3

]

, (5.17)

E2κλ =
1

2

(

b
µ

κ bµλ − bµ
κ bµλ

)

=

=
1

2

[

a3 ·R∗T,κ ·R∗T,λ · a3 + a3 ·R∗T,κ ·R∗ · a3,λ +a3 ·R∗T,λ ·R∗ · a3,κ

]

, (5.18)

and, furthermore,

Eκ3 = E3κ = gκ ·E · g3 =
1

2
gκ · g3 ≈ 1

2
ϑsa3 · (aκ × es) =

1

2
ϑs

√
a eκµ3e

µ
s ≈ Eoκ3,

(5.19)

E33 = g3 · E · g3 =
1

2
(g3 · g3 − g33) ≈ 0. (5.20)

It is noted that the scalar components of the Green-Lagrange strain tensor obtained
above at the arbitrary point P are related to the contravariant basis gkgl. Naturally,
these components can also be written in the contravariant basis akal, using the inverse

shifter
−1
µ m

k .

5.5. To summarize the above results it is worth mentioning that when the above
shell kinematics based on the Reissner-Mindlin hypothesis is employed, we obtain that
E33 ≈ 0 and Eκ3 ≈ Eoκ3, i.e. neither the change in the thickness, nor the variation of
the transverse shear deformations across the thickness of the shell can be taken into
account.

6. Concluding remarks

This paper investigates the middle surface of a shell in connection with the kine-
matical description of nonlinear shell theories. It is assumed that on the reference
middle surface the displacements and the rotations of the base vectors are finite,
whereas the strains are infinitesimal. A convected coordinate system attached to the
middle surface is employed.

On the deformed middle surface, the tangential base vectors and, therefore, the unit
normal are uniquely determined by the displacement field. To describe the rotation of
the base vectors on the middle surface in the deformation process, this paper applies
three rotation tensors.

There exist an infinitely large number of rotation tensors that rotate the unit
normal vector and the tangential base vectors of the reference surface into the unit
normal vector and tangent base vectors of the deformed middle surface. In this paper,
one of the rotation tensors describing the above mentioned rotation (R2) is chosen
in such a way that the axis of the rotation lies in the tangent plane of the reference
middle surface. Such a rotation tensor is uniquely defined by the displacement field
of the middle surface. The second rotation tensor (Rn) defined in the paper rotates
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the tangent base vectors obtained by rotation (R2) in the tangent plane of deformed
middle surface about its normal. This rotation is usually called drilling rotation in the
specialist literature. Both rotations mentioned are finite and yield a single rotation
(R∗ = Rn ·R2). The axis of the third rotation tensor (Rs) lies in the tangent plane of
the deformed middle surface and performs an infinitesimally small rotation on the base
vectors obtained after the previous two rotations. The resultant rotation tensor thus
describes three, geometrically well identified (two finite and an infinitesimal) rotations

and can be given by the product of the three rotation tensors (R = Rs ·R
∗

= Rs ·
Rn · R2). All the three rotation tensors are transformed onto the reference middle
surface in the paper (R = R

∗ ·Rs = R2·R1·Rs). The transverse shear strains on the
middle surface are obtained from the third, infinitesimally small rotation, whereas
the description of the transverse normal strain requires the introduction of another
parameter.

After describing the rotations of the base vectors, the complete three-dimensional
deformation gradient tensor, the Green-Lagrange strain tensor as well as the sym-
metric right Jaumann strain tensor on the middle surface of the shell are determined,
using the three-dimensional theory of deformation of solids. Due to the assumptions
(neglections) introduced by the paper, the Green-Lagrange and the Jaumann strain
tensors are identical on the middle surface.

The shell theory presented by this paper to investigate the middle surface of the
shell leads hence to a seven-parameter shell model. These parameters consist of the
three components of the displacement vector of the middle surface, one parameter of
the rotation tensor Rn, two parameters of the rotation tensor Rs, and the seventh
parameter is the transverse normal strain.
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Appendix A.

This appendix contains the proof of equation Rn ·R2 = R2 ·R1, where

Rn = cosϑ1I + (1 − cosϑ1)nn + sin ϑ1 n × I ,

R2 = cosϑ2 I + (1 − cosϑ2) e2 e2 + sinϑ2 e2×I ,

R1 = cosϑ1I + (1 − cosϑ1)a3 a3 + sinϑ1 a3 × I ,

n = R2 · a3 = cosϑ2 a3 + sin ϑ2 e2 × a3.

Since the arbitrary vector c can be written in terms of three orthogonal unit vectors
e2 × a3, e2, a3 as c = c1e2 × a3 + c2 e2 + c3 a3, it is to be pointed out that

Rn ·R2 · (e2 × a3) = R2 ·R1 · (e2 × a3) , (A.1)

Rn ·R2 · e2 = R2 ·R1 · e2, (A.2)

Rn ·R2 · a3 = R2 ·R1 · a3. (A.3)

Indeed, the transformations can be detailed on the one hand as

Rn ·R2 · (e2 × a3) = Rn · [ cosϑ2 (e2 × a3) − sin ϑ2a3 ] =

= cosϑ1 [ cosϑ2 (e2×a3) − sinϑ2a3 ] +

+ (1 − cosϑ1) [ sin ϑ2 (cosϑ2a3 + sin ϑ2e2 × a3) − sin ϑ2 (cosϑ2a3 + sinϑ2e2 × a3) ] +

+ sinϑ1

(

cos2 ϑ2 e2 + sin2 ϑ2 e2

)

,

Rn ·R2 · e2 = Rn · e2 =

= cosϑ1e2 + sinϑ1 [ cosϑ2 (e2 × a3) + sinϑ2a3 ] ,

Rn ·R2 · a3 = Rn · n = n,

and, on the other hand, as

R2 ·R1 · (e2 × a3) = R2 · [ cosϑ1 (e2 × a3) + sin ϑ1e2 ] =

= cosϑ2 [ cosϑ1 (e2 × a3) + sin ϑ1e2 ] +

(1 − cosϑ2) sin ϑ1e2 − sinϑ2 cosϑ1a3 ,

R2 ·R1 · e2 = R2 · [ cosϑ1e2 + sin ϑ1 (a3 × e2) ] =

= cosϑ2 [ cosϑ1e2 + sinϑ1 (a3 × e2) ] +

+ (1 − cosϑ2) cosϑ1e2 + sin ϑ2 sin ϑ1a3 ,

R2 ·R1 · a3 = R2 · a3 = n,
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i.e. conditions (A.1)-(A.3) hold.

Appendix B.

The positions of the base vectors with respect to each other do not change when they
are rotated. Hence, the following relations hold (for example):

k
∗

m × k
∗

k = (R∗·am) × (R∗·ak) = R
∗ · (am × ak) , (B.1)

km · kk =
(

Rs · k
∗

m

)

·
(

Rs · k
∗

k

)

=

= k
∗

m · k∗

k = (R∗ · am) · (R∗ · ak) = am · ak = amk. (B.2)


