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1. Introduction

1.1. Components of tensors at a point of space can be transformed from one co-
ordinate system into another by making use of the general transformation rules of
tensors. If the coordinate systems move with respect to each other, one speaks about
time dependent transformations.

If the motion of the coordinate systems relative to each other is arbitrary (one of the
coordinate systems is deformed with respect to the other) then the transformation is
also referred to as arbitrary, otherwise, i.e., for a rigid body motion as relative motion
of the coordinate system, the transformation is an orthogonal one and in both cases
time dependent.

From this point of view those tensors (including some time rate of tensors) which
can be defined independently of the choice of coordinate systems moving arbitrarily
with respect to each other, i.e., which are invariant under any arbitrary and time de-
pendent transformations, will be referred to as physically (or materially) objective, or,
for the sake of brevity, objective tensors or objective rates. (We remark that in the lit-
erature criteria of physical objectivity are valid mostly for orthogonal transformation
only.)

Fulfillment of physical objectivity is a necessary (but not sufficient) condition for
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tensors (and time rates of tensors) fulfilling the criterion of material objectivity and
disregards the issue of establishing constitutive equations.

1.2. The first objective time rate, the Jaumann stress rate [1] is related to a
coordinate system rotating together with the spin tensor of continuum. Later on the
Jaumann stress rate was also derived by other authors - for example by Fromm [2],
Zaremba [3], Thomas [4], Noll [5] and Hill [6]. These authors have not referred to
Jaumann’s work. In the literature, however, the Jaumann’s stress rate is generally
accepted although Atluri [7] associates it with the names Zaremba - Jaumann - Noll.

A detailed description of some objective time rates is presented, among others, by
Sedov [8], Prager [9], Naghdi and Wainwright [10], Atluri [7], Masur [11], Dubey [12],
Szabé and Balla [13], Haupt and Tsakamakis [14].

There are some famous objective time rates beside the Jaumann stress rate men-
tioned above. Using convective coordinates objective time rates of tensors with con-
travariant or covariant components were set up by Oldroyd [15], Trusdell [16], Cotter
and Rivlin [17] and with all possible subscripts and superscripts by Sedov [8] and
Atluri [7]. Atluri also gave the objective time rates in a fixed coordinate system. The
stress rate introduced by Trusdell [16] is that of the II.Piola - Kirchhoff stress tensor.
The objective time rates defined by Green and Naghdi [18], Green and McInnis [19],
Dienes [20] and Atluri [7] are all regarded in a coordinate system rotating together
with the spin tensor of the rotation tensor obtained from the polar decomposition of
the deformation gradient. The objective time rate of Sowerby and Chu [21] is related
to a coordinate system rotating with the spin tensor taken in the principal axis of the
strains in the present configuration.

The objective time rates in [1] an [15]-[21] are all that of the stress tensor and
invariance under orthogonal transformation is considered as a criterion for material
objectivity.

References [7]-[14] offer not only a survey on the objective time rates but also
a sort of systematization. The latter is grounded on the fact that the objective
time rates are defined with the aid of a certain movement of the continuum, usually
by the mapping of the reference configuration onto the present configuration or by
the transformation between the fixed and convected coordinate systems or by the
motion of the principal axis of strains. In some cases invariance under orthogonal
transformations is a requirement, in the remaining cases, however, it is not.

After a wide mathematical foundation the book [22] by Marsden and Hughes also
deals with the physically objective time rates pointing out that " All so called objective
rates of second order tensors are in fact Lie derivatives."

1.3. Part I. and Part II. of the present paper are aimed to introduce physically
objective time rates on the basis of mechanical (kinematical) considerations only
and makes the introduction of the concept independent of the possible motions of
continuum.

To accomplish this goal the paper investigates tensors and time rates of tensors
in coordinate systems moving arbitrarily with respect to each other or, which is the
same thing, in coordinate systems which are deformable. We regard alternatively one
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of the two coordinate systems as fixed; the other is then in motion with respect to
the fixed one.

1.4. Part I of the present paper investigates the motion of two distinct continua.
One of the two continua is the coordinate system moving in the fixed coordinate
system as a fictitious purely geometrical continuum. The other is the actual material
continuum itself. At the same time the motion of the actual material continuum
can be viewed both from the fixed coordinate system and from the one moving with
respect to it.

In a particular case the convected coordinate system can also be regarded as a
moving coordinate system or a fixed one (see, for example, Section 4). If this is the
case, one should keep in mind that the continuum is at a relative rest in the convected
coordinate system.

1.5. The next section investigates coordinate systems moving arbitrarily with
respect to each other. Metric tensors, velocities, time derivatives of base vectors are
also discussed.

Section 3 is devoted to the motion of a continuum in coordinate systems moving
arbitrarily with respect to each other.

In Section 4 material time rates are defined in various coordinate systems including
the fixed coordinate system, the coordinate system moving arbitrarily with respect to
the fixed one and the convected coordinate system. The various time rates of the same
tensor are related to each other and the corresponding relations are also presented.

1.6. We shall use both the indicial notations of tensors and the symbolic or direct
notational system. The coordinate systems are arbitrary and curvilinear.

In accordance with the general rules of indicial notations - no matter whether the
indices are minuscule or majuscule - indices range over the integers 1,2 and 3; sum-
mation over repeated indices is implied and the subscripts proceeded by a [comma]
{semicolon} denotes [partial] {covariant} differentiation with respect to the corre-
sponding variable. Underscore of indices suspends summation. 67 stands for the
Kronecker symbol.

As regards symbolic notations the dot product is denoted in the usual manner, i.e.,
by a dot placed between the factors, while no operation sign is employed to denote
tensor products. If necessary, small asterisks are used to show where the indices stand,
for example A*, = a%g,g' in which g and g' are the base vectors. (In the case of
indicial notations it is obvious where the indices are.)

The transpose of a tensor is denoted by T. We shall utilize the fact that the
covariant derivatives are defined independently of a coordinate system.

Time is common for all sets of variables. At the points of time ¢, and ¢ > ¢, (oth-
erwise t is arbitrary) the state of continuum is referred to as reference configuration
and present configuration, respectively.

Further notations and notational conventions are presented at their first occurrence
in the text.
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2. Arbitrary motion of two coordinate systems with respect to each other

2.1. First let the coordinate system {2} be the fixed one. The corresponding base
vectors and the covariant metric tensor are

o
Ozp’

where r is the position vector of a point P in space.

1 .2

gp (CC , T ,m3) = g? (xl,mQ,m?’) and 9pq (xl,mQ,x3) , (2.1)

Let the coordinate system moving arbitrarily with respect to the coordinate system
{2} be denoted by {Z"} . The motion of the coordinate system {Z"} relative to the
coordinate system {aP} can be given in the form

aP = ©@gp (71,32,7%¢),  where  (9J = det ——— #0 (2:2)

Here and in the sequel a subscript in paranthesis to the left of the variable is of
informative nature.

The base vectors in the coordinate system {Ek} are of the form

or or 9(Ggp 8(G)xp oz
~ (]l A2 3. _ _ ol (1 22 23, _
gk(xaxaaf,f)—w—@ 9 oaF B g(xaxvmat)_mg
(2.3)
The transformation matrices also depend on time and the matrix 8<80+?;lrp is the inverse
of the matrix 3;@)#.
The covariant metric tensor in the coordinate system{&:\k} is
9(G) pr §(G) pa )
~2 3. 1.2 .3
gkl (.T T, T t) = ngpq, Ipq ((L’ , ™, T ) . (24)

As can be seen with ease neither g, nor g,, depend on time for an observer being in the
coordinate system {x?} while, on the contrary, both g, and gj; are time dependent.
y y g g
Components of a tensor A = a” g,g? = aklgkgl regarded in the coordinate systems
{a?} and {Z"} obey the transformation rule which follows from (2.3):

o 07 91

a; = 8(G)xp W& q (25)

2.2. Secondly let the coordinate system {Ek} be the fixed one. In this case - for
an observer in the coordinate system {Ek} - neither the base vectors g,g' nor the
corresponding metric tensor gx; depend on time:

A il A2 A 0 Al A2 A
gk (xl,x2ax3) = %rka gl ($1,1'2,1'3), gkl (LU .’EQ m?)) (26)

For the motion of the coordinate system {z?} relative to the coordinate system {55’“}
we can write

oF) gk

B = Oz (3122 2518) (F) J — det £0. (2.7)
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In this case the base vectors in the coordinate system {aP} are

or  or 9Wgk  9zk x4
1.2 3., _ 9r _ or _ 5 a (1 .2 3.4\ _ 5l
gp(x’m’x’t)_axp_(%:\k 8mp - 8.’151) ks g (:U’:U’x’t)_a(F)alg
(2.8)
The covariant metric tensor in the coordinate system {aP} takes the form
oWzk oMzl a1 2
9pq (a:17m2,:1:3;t = ngkl, gkl ($17$2,$3) . (2.9)

. . . . P . .
The transformation matrices also depend on time and the matrix 3(8F+?k is the inverse

.. 9F)gk
of the matrix <53

The apparent contradiction between the formulae (2.4) and (2.9) giving the metric
tensors follows from the fact that time dependence of tensor components depends on
which coordinate system is regarded as a fixed one. If the coordinate system {z?}
is the fixed one, gp, is independent of time, but gi; is time dependent and, on the
contrary, if {Ek} is the fixed coordinate system gy; is independent of time while g,,
is a function of time.

2.3. In the sequel - unless the opposite is stated - we shall always assume that the
coordinate system {zP} is a fized one while the coordinate system {Ek}, which will be
referred to as grid, is the moving one. [Use of the letter " F” (fixed) and ”G” (grid)
for the motions (2.7) and (2.2) implies this convention tacitly.]

This general convention means no limitation either on the arbitrariness of the
motion of coordinate systems relative to each other or on the general validity of the
conclusions we hope to come to.

In what follows

— the motion of a material continuum with respect to the fixed coordinate system
{zP} will be referred to simply as motion or absolute motion,

— the motion of a material continuum with respect to the coordinate system {Ek }7
i.e., to the grid will be referred to as relative motion

— and the motion of the coordinate system {Z*}, i.e., that of the grid with respect
to the fixed coordinate system {zP} will be called the motion of grid or grid
motion.

2.4. Velocity of a point with coordinates 7* of the grid with respect to {z?} follows
from the grid motion (2.2):

or or 9@ gp
Gy = ) - & = )ypg — (G)gka 2.10
\4 8t N 81.1) 8t N v gp v gk7 ( )
(@) (@)
(G) pp ozt
x),p_ O @k _ 977 (ax) p
where = — - and C e v (2.11)

are the components of the velocity vector (5®)v in the coordinate systems {zP} and
{Ek}. Here and in the sequel a subscript placed to the right of a vertical line — the
latter is a right delimiter — refers to the fact that the corresponding coordinates are
constants when one determines a time derivative.
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With regard to all that has been said about the coordinate systems {7} and {Z"}
it is obvious that their roles are interchangeable. Comparison of (2.2) and (2.7) yields
an identity

P — (G)yp [(F)gl (!, 22, 2% 1) , 7 (...)@3(...);4 — 2P

which is valid at any point of the grid and from which, taking into account that the
points {2P} do not move at all, a further identity follows:

D (G) g (G)pp H(F) 7k
aai _oo 89[: —%Nf —8ax (2.12)
t (@) t 1@ Z t @)
(F) ok _
where A = (Fgk, (2.13)
ot )

Let 2 be a point of the coordinate system {z?}. After substituting (2.13) and (2.11)
into (2.12) we obtain the velocity (FX)v of the point 2P with respect to the grid — that
is to the coordinate system {5"}

~k
(FR)5k _ 0 (G p — _ (GR)gk,

= — m (F}A()V = — (GX)V . (214)
€T

ie.,

2.5. From the velocity vector field of the grid (4®v we can obtain, in the usual
manner, the velocity gradient, the strain rate tensor and the spin tensor for the grid
motion:

(G — (GX)lpqugq: (G)yvy, (GX)lpq - (GX)UP;q, (2.15)
X X 1 X X X 1 X X
(@) p = (@)gp g o — 5 ((G )[4 (@ )LT>7 (@) gp — 5 ((G 4 (@ >qu>,
(2.16)
X X 1 X X X 1 X X
(@) gy — (@)yp g o — 5 ((G ) _ (G )LT>, (@x)gp = 5 ((G i~ (@ >qu>.
(2.17)

By making use of the transformation rule (2.5) we can readily obtain the components
(Gx)lpq, (Gx)d”q, (Gx)ﬁpq as well, i.e., the components of the previous tensors in the
coordinate system {Z"}.

Recalling the definition of (4 I — see equation (2.15) — , we have

9 (ar)

_ (Gx) — (G T .
= d( v) L-dr. (2.18)

(@)
2.6. In accordance with (2.18) it also holds that

“ og!
ot

=013 — GI. 5
It 8k,

(@)

=—g. @I, (2.19)
@)
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3. Motion of a body in the absolute coordinate system and the grid

3.1. Let {X K } be the convected coordinate system. Further let the motion of the
body with respect to the coordinate system {f’“} be

~ ~ oB) gk
ah = Bgk (X1, X% X531, (B)J:detax—K £0. (3.1)
This motion is the relative motion of the body. By
o®B)
2P = Blgr (X1 X2 X3%1), J:detaX—f{ £0 (3.2)

we denote the motion of the body with respect to {x?} — absolute motion of the body.
With the relative motion of the body it follows that

P = Bgp (Xl,XQ,XB;t) — (G)pp [(B)fl (Xl,XQ,XB;t) B2y B ;t]

(3.3)
H(B) P 9(C) pp §(B) Gk o) - (B
and J = det =7 = det —————p = (D P10,
3.2. The base vectors of the coordinate system { X%} assume the form
- or or 9B)gr 9B gp N ox’t
Gk =5o7 == = = 7 8ps Gl = =87, (3.4)
0X OoxP 0X 0X O(B) za
from which using (2.3) and (3.3) we obtain
JBIr gt 9Gp oz gzt g®F . axL
K= 8k = —F= gk = gk, G" = =8
XK 9(G)gp ozt OXKE 9(G)gp OXK 6(B)x(l )
3.5
The transformation matrices are again time dependent and the matrices 8‘?%);(1 and
8‘?})3{—); are respectively inverses of the matrices ‘98(;) 2’ and 8;;)?:' .

Using (3.4) and (3.5) for the covariant metric tensor of the coordinate system { X}
we can write
~ OB xp H(B) 1a OBk gBIHl

KL = xR XL 9 = HxK XL M (36)

In view of (3.4) and (3.5) the components of a tensor A = a”,g,g? = atggl =
ak L(A} kG, which is regarded in the fixed coordinate system {2z} and the coordinate
systems {Z*} and {X*} each moving with respect to the fixed one, should follow
the transformation rules

K oXK 9B)ga oxXK 9Bzl

. P __
“rL= OB)yp HOXL @q= 9BFE HXL ay. (3.7)
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Without entering into further details, we mention that for the case when the con-
vected coordinate system {X K } is chosen as a fixed one

G (X', X% X?) = g(_rw G (X', X2, X%). (3.8)

are the base vectors observed from the coordinate system itself.

3.3 The quantities we have defined so far are associated with the current configura-
tion and are regarded at the spatial point P. The quantities that are regarded at the
points of the reference configuration will be denoted by barred letters (for example
Gy or dr).

Motion (3.2) is a mapping of the reference configuration onto the current configu-
ration. The deformation gradient

oXE

OB r

G and its inverse F~! =

~ THxL &

represent a linear mapping and remapping between the line elements d¥ = dX X G g
and dr = dzPg,, regarded, respectively, in the reference and current configurations:

dr=F.dF, dF=F""'.dr. (3.10)

With the line elements dr = ds€ and dr = dse, in which € and e are unit vectors
in the reference and current configurations, one can define stretches in the directions

€ and e:

1
:d—f, M=% F' . F.e= - . (3.11)
ds e- (Ffl) .Fl.e

Ae

3.4. By using the polar decomposition theorem, the deformation gradient F (detF =
J #0) can be decomposed into the dot product of the rotation tensor

—K

R=R'g,G, R '=R" (3.12)
with the right and left stretch tensors
T=U,GxG", V=Vlgg
=U,GkG, =Viepe (3.13)
in a unique fashion:
F=R- U=V R. (3.14)

Here the tensors U and V are defined in the reference and current configurations and
are both positive definite and symmetric tensors while the tensor R is orthogonal.

Let m, and n,; be orthonormal eigenvectors directed along the principal axes of
the stretch tensors U and V, respectively. The coordinate systems constituted by
the principal axes of the right and left stretch tensors are denoted by {7”} and {v?}.
It can be shown that

n,=R-1n, @0,=R'-n, (3.15)
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The tensors U and V have the same eigenvalues (denoted by Ap). In the coordinate
systems {7P} and {v?} we have
U rawd 7" 1 P 7 P q -1 1 P q
U=MNonn!, U = )\—péqnpn , V =XMonpnt, V= )\—péqnpn .

(3.16)
In addition we define the Hencky strain tensor in the coordinate system {v?}

In V =InA,6in,n?. (3.17)
3.5. The velocity vector of the moving continuum at the point with coordinates
XK observed from the coordinate system {zP} can be obtained from the motion (3.2):

o®B) p
ot

_ Or

or 9B P
== el

(X) Oz Ot

(X)V — (X)U;Dgp7 (X)Up —

(X)

(3.18)

(X)

From the velocity vector field ®)v of the moving continuum we can derive the velocity
gradient, the strain rate tensor and the spin tensor:

) r = (X)lpqugq = Myv, (X)lpq = (x)vp;q7 (3.19)

1 X X
5 (< P 4 >qu) . (3.20)

1

X X ]‘ X X X X X
VW = Oy g g9 = 5(( I — ULT), ()wpqzi(( - <>qu). (3.21)

X X 1 X X X
CIp = K g gt — 5(( )L+ ULT), QF

The velocity vector at the point with coordinates X% of the continuum being now
observed from the coordinate system {Ek} (from the grid), i.e., the relative velocity
of the continuum follows from the the relative motion (3.1):

oz*

- or oBIzk
Ry — oz
ot

_ X)cka X))~k
i el B - S

(X)

(3.22)

(X)

From the relative velocity vector field of the continuum we can obtain the relative
velocity gradient, the relative strain rate tensor and the relative spin tensor:

< 2 PN 0 3 ~ < X) A

®p= Ofkg sl = o= (( >V) g, O = Ok, (3.23)
- - 1/ - 1 e o~
®p = ®ggg = 5 ((x) L+ ® LT)) d = 3 ((x)ﬂlJr (X)ll’“), (3.24)

% HDoka sl L (& % D~k _ 1 (= 7
Ow = Oghgg = 5(( I — ()LT>7 “w’%:§(( L ()llk>~ (3.25)

It follows from the nature of things that the velocity at the point X of the
continuum with respect to the convected coordinate system { X} vanishes: X)v = 0,
XK = 0.

Similarly, it can be checked with ease that 'L = XD = O W = ¢.



214 1. Kozdk

3.6. Velocities of the points of continuum defined in the coordinate systems {zP}
and {Z"} can be related to each other by using the motion (2.2) of the grid and the
relative motion (3.1) of continuum:

(X ))

= @Ipp . Epr o By = GOy 4 By (3.26)

9@ pr 9Bk

(x) 31‘ +
@ 07 ot

V:E

or [ 9GP
(X) T Oz ot

Substituting (2.10) and (3.22) we arrive at the result

G 9
Wy — (@0 4 I g

From equation (3.26), which relates the various velocities to each other, taking
equations (2.15)-(2.17), (3.19)-(3.21) and (3.23)-(3.25) into account, we can readily
establish further equations for the velocity gradients, the strain rate tensors and the
spin tensors:

- @Ip . ®F (X)lpq — (Gx)lpq+ (?()gpq, (3.27)
X _ (Gx X X _ (Gx X
®p=©Ip4 ®p, | )dpq = ( )dpq+ ( )dpq7 (3.28)
Ow = w4 Ow, (X)wpq - (GX)wpq + (?c)wpq. (3.29)

The component forms of equations (3.27)-(3.29) can be written not only in the coor-
dinate system {27}, but also in the coordinate system {Z"} and {X*}.

3.7. On the analogy of equation (2.19) we can obtain the time derivatives [measured
in the coordinate system {xP}] of the base vectors Gx and GL:

(

S )
L
: 9Gx| _ wp.g, %G

o o =—GL. 9L (3.30)
(X)

(X)

Similarly, for the time derivatives of the base vectors G Kk and GL[measured in the
coordinate system {Ek}] we have:

® &
98kl _ wp.g,
ot | ) a1

=- Gl L. (3.31)

4. Material time rates of tensors

4.1. First, we shall separately define material time derivatives in the coordinate
systems {aF}, {z"} and {X®}. Then we are seeking relations between the material
time derivatives so introduced. Special care will be given to the metric tensor.
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Consider the tensor fields

A = a,,8"g7, B =1y C = EKLGKGL,
Apq (a: z?, 23 t) gp (ml,xQ,xB) ,
bl (z',2%,2%1), g (z',2%,2%),
CrL (Xl,XZ,XS; ),  GE(x!,x2X3%).

written in the various coordinate systems as if they were fixed coordinate systems. By
material time derivatives defined in the coordinate systems introduced, and for the
tensors listed above we mean the time rate of change of the given tensor with respect
to the coordinate system in which the tensor is defined and taken at the material
point identified by the convected coordinates {X*}.

Taking the possibilities one by one

- if {aP} is the defining coordinate system in which the continuum moves according
to equation (3.2) and with the velocity *)v given by equation (3.18) then

(€3]

B),.s
(4 = (g grgr— Al _ 0%l puq 04 A I
ot (X) ot (@) ox* (@) ot (X)
ie., ®a,, = agfq +apq;s )y, (4.2)

- if {Ek} is the defining coordinate system with respect to which the continuum
moves according to (3.1) and with the with velocity ®)v given by equation (3.22)
then

®)

N B
OB = Oheghg = 0 =) gy 08 ‘9( il (4.3)
tlix) b T (@) (x)
S a@ ~ -
ie., (X)bkl = a—kl + bkl;m (x);U\'m, (44)
t @)

- if {X*} is the defining coordinate system in which the continuum does not move,
i.e., the velocity X)v = 0 then

x)
T - el (45)
Hleo tl
N e
ie, Mg = EIZL . (4.6)
()

Making use of the previous results, material time derivatives can be established for
second-order tensors with position of indices other than above and for any tensor of
higher order.
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The material time derivatives obey the derivation rules valid for the sum and
product of tensors.

Being real tensors the material time derivatives follow the general transformation
laws of tensors. According to (2.5) for example:

~k G
(X)’_\k o0z 8( ).’L'q (z)

a,;= ar,. (4.7

0@ gpr 97t a

4.2 The material time derivatives of the independent tensors A, B and C, which
we have defined in a given coordinate system and discussed so far, are also independent
of each other.

We are, however, faced with a distinct case when we consider the material time
derivatives of the same tensor in various coordinate systems which move with respect
to each other, i.e., if the tensor in question is defined independently of a coordinate
system since, on the contrary, the material time derivative itself is always defined in
a given coordinate system, as is the case, for instance, in respect of the material time
derivatives of the tensor

A= apqugq = 6kl§’“§l = aKLéKéL. (4.8)

Depending on what the coordinate system is, the material time derivative of a
tensor will be referred to as

- material time derivative if it is defined in the coordinate system {z?},
- relative material time derivative if it is defined in the coordinate system {iz\k}
- convected material time derivative if it is defined in the coordinate system {X K }

In addition, relations can be established between the various material time deriva-
tives.

Assuming that formulae (4.2), (4.4) and (4.6) are valid for the tensor field given by
(4.8), we obtain for the tensor A, the material time derivative, the relative material
time derivative and the convected material time derivative:

Oa,
> pg = ~pe + pg;s (X)U$’ (4.9)
ot @)
%) (~ da, ~ ®)em
%) (akl) = 8—:1 +akl;m ( )’U s (410)
(@)
.. Oa
) (aKL) = aIt{L . (411)
(X)

The preceding equations could be used with minor changes concerning the position
of indices for second-order tensors with indices positioned differently and for a tensor
of any order.

4.3. Material time derivatives, defined respectively in the coordinate systems {z?}
and {z"}, {zF} and {X*}, and finally in the coordinate systems {z"} and {X*}
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can be related to each other by means of the motion of grid and continuum in the
coordinate system {a?}, provided that the coordinate system {z?} is fixed.

Indeed, the material time derivative of the tensor (4.8) defined independently of
the choice of a coordinate system can also be determined in the following manner:

(€3]

~ Skgl
WA= 0 (4@ ) - LWER)
ot (X)
<
. 0 (augtg) oA o®zm|
- ot @ 0T Ot [
oa (X)GA’“ (XX)aAl 0A 9BIT
Akl| <kl | ~ . 08 =l ok . 98 A "
=7 ghg'+an| : =] gl+g" i = e (4.12)
ot |z ot | =) Ot |5y | 0Fm Ot |

Substituting equations (4.10) and (2.19) we obtain
M4 = ® (A,.) — GOT. A _A. GO

where (69 L is the velocity gradient for the motion of grid. The asterisks which
indicate the positions of indices, refer to the fact that the relation between the two
material time derivatives depends on the positions of indices in the grid coordinate
system {Z*}.

We may notice that the difference between ) A" and ®) A, follows from the change
of the base vectors g* and g' of the grid coordinate system {Z* } in the fixed coordinate
system {aP}.

By repeating the above procedure for other positions of indices and gathering then
the results we may write
L ®A,)=®a 4+ ©@IT. 44 4. 9, (
I ®A) = ®Aa - @9 . A4+ 4. 9L, (4.14
L. ®ar) = ®a 4 @IpT. 4 4. LT (
) (

IV. ®ay =04 - 9.4 4. LT

In the case (¥ D = 0, i.e., if the grid has a rigid body motion, (6L = (G W
where (5% W is the spin tensor of the grid, equations (4.13)-(4.16) lead to the equa-
tions

®(An) = By =By = Uy =94, (4.17)
@A = Wg - Ow.A4+4. Ow, (4.18)

It is clear that the latter equation, which relates material time derivatives defined
in the coordinate systems {ﬁj\k} and {«P}, is independent of the position of indices.
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4.4. Apply all that has been said above to the metric tensors. In the case when
{aP} is the fixed coordinate system then, according to (2.4), gpq does not depend on
time but gi; does, and conversely, when {Ek} is the fixed coordinate system, then
gx1 does not depend on time but g,, does. Accordingly if, for instance, {zP} is the
fized coordinate system, then on the basis of equation (4.13) it follows

9@ gp §(G)ga
Ira =57k~ ol

ie. ®(Gu) = @y + @9, =2 ©9g,,. (4.19)

() =0= ®Gu) - (Gx)lAsk?}\sl — Oks (GX)TSI»

Similarly, on the basis of equation (4.16) we have

(%) @\kl) - _ 9 (Gx)gl%l'

4.5. Consider now the case of two grids moving arbitrarily with respect to each
other. Let {Z"} and {57’} be the two grids. Further let €L = )L — (G L where
)L and (¥ L are the velocity gradients in the coordinate systems {?’} and {Z"}

being measured in the coordinate system {z”}. In other words (&L is the gradient
of the velocity ¥v = @)y — (G¥y  which we measure observing the motion of

the coordinate system {Eb} from the coordinate system {f" } Writing the equations
(4.13)-(4.16) both for the coordinate system {Z*} and for the coordinate system {@}

and then subtracting the equations resulting from each other we obtain:

L (4. = ®A.)+ LT 444 &L, (4.20)
L @) = ®U,) - L. A+A. L, (4.21)
. O a)y = ®Ury + @rT. 4 4. LT (4.22)
v, O™y = @~y - L. 44 T (4.23)

The results implied in equations (4.13)-(4.16) and (4.20)-(4.23) can be summarized
as follows:

If the material time derivative of a tensor defined in a given - say, in the first -
coordinate system is known, then the material time derivative of the tensor defined
in another - say, the second - coordinate system (moving arbitrarily with respect to
the first one) is obtained by adding such an expression to the first material time
derivative which is a linear combination of products involving as factors the gradient
of the velocity vector field — measured observing the motion of the second coordinate
system relative to the first one — and the tensor itself. The terms involved in the
linear combination depend on the order of the tensor and the positions of indices.

4.6. On the basis of the above rule it holds for time rate of change of tensors
defined in the convected coordinate system (without detailing the equations with
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mixed positions of indices) that

I ®(A,)=®Aa 4+ OLT. A+ ®f, (4.24)

IV. Xy =04 . 4A-4. 9T (4.25)
where ®) L is the velocity gradient for the velocity vector field ®v, and

I ®A,)=®a 4+ O[T 4+4. ®f, (4.26)

v, & (A*) = ®Ag - O A—-A4. LT (4.27)

where ® L is the velocity gradient for the velocity vector field ®v.

4.7. Relations between the time derivatives can be given, of course, in indicial
notations. Considering relation (4.14), for example, we may write

ok 9(G) za

® (ak) _ (9 _ (Gx) (Gx)ps ) 0T Ot
(@) _( ar, 0%, + a?, zq) S o

(4.28)

The results obtained can also be generalized for a tensor of any order. Considering

a third-order tensor A = a,""g’g,g, = @,/™g"8i8m, for example, we shall find

o@zp ozl oz™

X) (~Im\ _ [((x): qr Gx) s T sr (Gx s (Gx)gr
& (@™) = (( )apq + )lpasq — % ( )lqs_apq (1 S) ozt 9@ ga 9Cgr
(4.29)

4.8. Dependence of material time derivatives on position of indices can also be
shown in indicial notations. For this purpose we write equation (4.28) in the form
(G) .
(x)ar _ 0 xra—x (%) (am ) + (Gx)lr at —a" (Gx)ls
q ozm  9(G)za ! s% q s

q-

Multiplying both sides by g,, and manipulating then the first term on the right side
into

G a7t Y 7 R, 7

902" 0% gy amy _p 020 0T
I gzm 9C) g @) Ik B0G) 1 9@ 4
0T 0Tl ) e e e

T 9 a(G)xq( (Gm@™1) = (@om) @ l) ’

(%) (aml ) g

we obtain, also with regard to equation (4.19) that
ozr ozt .
g = = R (g.,) — (G — (Gx)s
Qpg = 507 50 (@) I°pasq — ps r’,
which is identical to equation (4.13).
4.9. Now we shall consider a covariant and a contravariant vector:

®a, = @a4 a @I @z = @z_ @[ 5 (4.30)
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4.10. Let ®a and ®a* be the accelerations of the point XX in the coordinate
systems {aP} and {Ek} For completeness we shall give how these accelerations are
related to each other.

By definition
g = () ((x)v)' and ®a— ® ((ﬁ)v)'. (4.31)

Tt follows from equation (3.26) that

Da= @ () = ) (@yy @y

where
(x) (€9)
: . 9G¥y . 9G¥y 9(Gx)y, 9Bk
(x) ((Gx>v> — - _ —
ot |x) o ox ot | (x)
_ (G0, ((Gx)vv> . By
According to equation (4.30) we have
) (@)V)' - ® ((ﬁ)v)' L (@ Ry
On the basis of the above equations we get from equation (4.31)
g = ®a* 4 (@¥g 1 2@, By, (4.32)

For our latter considerations we remark that neither the velocity ®)v nor the accel-
eration Ma are physically objectiv quantities.
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