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Abstract. Sufficient conditions guaranteeing the solvability of non-linear integral boundary value
problems for a system of non-linear ordinary differential equations are obtained using a special
successive approximation technique. The efficiency of the suggested approach is shown on an
example of a non-linear integral boundary value problem possessing at least two solutions.
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1. INTRODUCTION

In [9], a new approach has been suggested for the investigation of existence and
approximate construction of solutions of non-local boundary value problems for or-
dinary differential equations. The purpose of the present paper is to apply this tech-
nique to obtain a scheme for the constructive solvability analysis of integral boundary
value problems in the case where the non-local boundary conditions depend involve
both the space variable and its derivative. Note that our approach is easier to apply
compared with those used earlier [3, 4, 6, 12, 14, 15] for more special cases. At first,
the given problem is reduced to a certain “model-type” one with a very simple two-
point separated linear boundary condition depending on parameters. The transformed
problem is then replaced by the Cauchy problem for suitably perturbed system con-
taining some artificially introduced vector parameters the numerical values of which
are to be determined later. The functional perturbation term, together with the given
integral boundary conditions, generates a system of finite-dimensional system of al-
gebraic or transcendental “determining” equations from which the numerical values
of introduced parameters should be found. The solvability of the determining system,
in turn, may be checked by studying some approximations constructed explicitly. We
use for that purpose topological degree techniques similarly to [6, 7, 15].

c
 2014 Miskolc University Press
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2. NOTATION AND SYMBOLS

We will use mainly the notation from [9]. For any vector xD col.x1; : : : ;xn/2Rn,
the obvious notation jxj D col.jx1j ; : : : ; jxnj/ is used and the inequalities between
vectors are understood componentwise. The same convention is adopted implicitly
for operations “max”, “min”, etc. applied to vector-valued functions. The symbol 1n
stands for the unit matrix of dimension n and r.K/ denotes the maximal, in modulus,
eigenvalue of a square matrix K.

Definition 1. For any non-negative vector � 2 Rn under the componentwise �-
neighbourhood of a point ´ 2 Rn we understand the set

B.´;�/ WD f� 2 Rn W j��´j � �g :

Similarly, for the given bounded connected set˝ �Rn;we define its componentwise
�-neighbourhood by putting

B.˝;�/ WD
[
�2˝

B .�;�/ :

Definition 2. For given two bounded connected sets Da � Rn and Db � Rn;
introduce the set

Da;b WD f.1��/´C�� W ´ 2Da; � 2Db; � 2 Œ0;1�g (2.1)

and its componentwise �-neighbourhood

D WD B.Da;b;�/: (2.2)

For a set D � Rn, closed interval Œa;b� � R, Carathéodory function f W Œa;b��
D! Rn, n�n matrix K with non-negative entries, we write

f 2 LipK.D/ (2.3)

if the inequality
jf .t;u/�f .t;v/j �K ju�vj

holds for all fu;vg �D and a. e. t 2 Œa;b�:
Finally, with a function f W Œa;b��D! Rn, we associate the vector

ıŒa;b�;D.f / WD
1

2

�
esssup.t;x/2Œa;b��Df .t;x/� ess inf.t;x/2Œa;b��D f .t;x/

�
: (2.4)

3. PROBLEM SETTING AND REDUCTION TO A MODEL BOUNDARY CONDITION

We consider the following non-linear integral boundary value problem which was
studied in [13]

dx

dt
D f .t;x/ ; t 2 Œa;b�; (3.1)Z b

a

Œg.s;x.s//Ch.s;f .s;x.s///�ds D d: (3.2)
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Let Da and Db be a convex subsets of Rn where one looks for respectively the
initial value x.a/ and the value x.b/ of the solution of the boundary value problem
(3.1), (3.2).

Based on the setsDa andDb according to (2.1 ) we introduce the convex setDa;b
and its componentwise �-neighbourhoodD as in (2.2). Thus, the domain of the space
variables in the given problem (3.1), (3.2) is the set D defined according to (2.2).

Here we suppose that the functions f W Œa;b��D ! Rn, g W Œa;b��D ! Rn,
and h W Œa;b��D! Rn satisfy the Carathéodory and the Lipschitz condition in the
domain D and d is a given vector.

Finally we suppose that the vector � in (2.2) is chosen so that

� �
b�a

2
ıŒa;b�;D.f /; (3.3)

where ıŒa;b�;D.f / is given in (2.4). We also assume that the maximal in modulus
eigenvalue of the matrix

Q WD
3.b�a/

10
K (3.4)

satisfies the inequality
r.Q/ < 1: (3.5)

It is important to emphasize thatD � Rn is supposed to be bounded and, thus, the
Lipschitz condition is not assumed globally.

The problem is to find and establish the existence of an absolutely continuous
solution x W Œa;b�!D of the problem (3.1), (3.2) with initial value x.a/ 2Da:

At first we simplify the boundary condition (3.2) and reduce it to a suitable two-
point separated linear one. To do so, similarly to [5,10,11,14] we apply an appropri-
ate “freezing” technique. Namely, we introduce the vectors of parameters

´D col.´1;´2; : : : ;´n/; �D col.�1;�2; : : : ;�n/ (3.6)

by formally putting
´D x.a/; �D x.b/: (3.7)

Now, instead of integral problem (3.1), (3.2) we will consider the following “model-
type” two-point boundary value problem with separated parameterized conditions:

dx

dt
D f .t;x/ ; t 2 Œa;b�; (3.8)

x.a/D ´; x.b/D �: (3.9)

The parameterization technique that we are going to use suggest that, instead of the
original boundary value problem with nonlinear integral boundary conditions (3.2),
we study the family of parametrized boundary value problems (3.8), (3.9), where
the boundary restrictions are linear and separated. Later, we return to the original
problem by choosing the values of the introduced parameters appropriately.
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Remark 1. The set of solutions of the non-linear integral boundary value problem
(3.1), (3.2) coincides with the set of the solutions of the parametrized problem (3.8),
(3.9) with separated restrictions, satisfying additional conditions (3.9).

4. SOME RESULTS FROM [13]

Similarly to [9,13] let us associate with the two-point parametrized boundary value
problem (3.8), (3.9) with separated boundary conditions the sequence of functions

xmC1.t;´;�/D ´C

Z t

a

f .s;xm.s;´;�//ds�
t �a

b�a

Z b

a

f .�;xm.�;´;�//d�

C
t �a

b�a
Œ��´� ; t 2 Œa;b�; mD 1;2; : : : ; (4.1)

satisfying (3.9) for arbitrary ´;� 2 Rn, where

x0.t;´;�/ D ´ C
t �a

b�a
Œ��´� D

�
1�

t �a

b�a

�
´ C

t �a

b�a
�; t 2 Œa;b� ; (4.2)

and ´ 2Da; � 2Db are considered as parameters.
It is obvious from (4.2) that x0.t;´;�/ is a convex combination of vectors ´ and �

for any t 2 Œa;b�.
The following Theorems 1, 2, and 3 were proved in [13].

Theorem 1 ([13, Theorem 1]). Let there exists a non-negative vector � such that
inequality (3.3) holds andf 2 LipK.D/ for D given by (2.2) with the given value of
�. Let, moreover, the matrix K be such that (3.5) holds with Q given by (3.4). Then,
for all fixed .´;�/ 2Da�Db:

1. The functions of sequence (4.1) are absolutely continuous on Œa;b�, satisfy
the two-point separated boundary conditions (3.9), and have values in D.

2. The sequence of functions (4.1) converges as m!1 to the limit function

x1 .t;´;�/ WD lim
m!1

xm.t;´;�/ (4.3)

uniformly in t 2 Œa;b�.
3. The limit function satisfies the initial condition

x1 .a;´;�/D ´

and the two-point separated boundary conditions (3.9).
4. The function x1 .�;´;�/ is a unique absolutely continuous solution of the

integral equation

x.t/D ´C

Z t

a

f .s;x.s//ds�
t �a

b�a

Z b

a

f .s;x.s//dsC
t �a

b�a
Œ��´� :
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In other words, x1.�;´;�/ satisfies the Cauchy problem for the modified
system of integro-differential equations:

dx

dt
D f .t;x/C

1

b�a
�.´;�/; t 2 Œa;b�;

x .a/D ´;

where � WDa�Db! Rn is the mapping given by formula

�.´;�/ WD ��´�

Z b

a

f .s;x1 .s;´;�//ds: (4.4)

5. The following error estimate holds:

jx1 .t;´;�/�xm .t;´;�/j �
10

9
˛1.t;a;b/Q

m .1n�Q/
�1 ıŒa;b�;D.f /; (4.5)

for any t 2 Œa;b� and m� 0; where ıŒa;b�;D.f / is given in (2.4) and

˛1.t;a;b/ WD 2.t �a/

�
1�

t �a

b�a

�
: (4.6)

Remark 2. It is easy to verify that maxt2Œa;b�˛1.t;a;b/D .b�a/=2:

Theorem 2 ([13, Theorem 3]). Let .´;�/ 2Da �Db . Under the assumptions of
Theorem 1, the limit function x1.�;´;�/ of sequence (4.1) is an absolutely continuous
solution of the integral boundary value problem (3.1), (3.2) if and only if the pair of
parameters .´;�/ satisfies the system of 2n algebraic determining equations

�.´;�/D 0; (4.7)

�.´;�/D 0; (4.8)

with � WDa�Db! Rn given by formula (4.4) and

�.´;�/ WD

Z b

a

Œg.s;x1.s;´;�//Ch.s;f .s;x1.s;´;�///�ds�d: (4.9)

The next statement proves that the system of determining equations (4.7), (4.8)
defines all possible solutions of the original non-linear integral boundary value prob-
lem (3.1), (3.2).

Theorem 3 ([13, Theorem 4]). Assume that conditions of Theorem 1 is satisfied. If
there exists a pair of vectors

�
´0;�0

�
2Da�Db satisfying the system of determining

equations (4.7), (4.8), then the integral boundary value problem (3.1), (3.2) has a
solution x0.�/ such that

x0.a/D ´0; x0.b/D �0

and, moreover, x0.�/D x1.�;´0;�0/:
Conversely, if the integral boundary value problem (3.1), (3.2) has a solution x0.�/

with .x0.a/;x0.b// 2Da �Db and fx0.t/ W t 2 Œa;b�g �D, then x0.�/ necessarily
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has the form x0.�/ D x1.�;x
0.a/;x0.b//; and the system of determining equations

(4.7), (4.8) is satisfied with ´D x0.a/; �D x0 .b/ :

5. SOLVABILITY ANALYSIS BASED ON THE APPROXIMATE DETERMINING
SYSTEM

The solvability of the determining system (4.7), (4.8), in turn, may be checked by
using the so-called approximate determining equations

�m.´;�/D 0; (5.1)

�m.´;�/D 0; (5.2)

where m is fixed and

�m.´;�/ WD ��´�

Z b

a

f .s;xm .s;´;�//ds; (5.3)

�m.´;�/ WD

Z b

a

Œg.s;xm .s;´;�//Ch.s;f .s;xm .s;´;�///�ds�d: (5.4)

Note that, unlike (4.7) and (4.8), equations (5.1) and (5.2) can be constructed expli-
citly.

In view of Theorem 1, it is natural to expect that, under suitable conditions, sys-
tems (4.7), (4.8) and (5.1), (5.2) are close enough to one another for m sufficiently
large.

Lemma 1. Assume that the conditions of Theorem 1 are satisfied and, moreover,
g 2 LipKg

.D/ and h 2 LipKh
. QD/, where

QD WD ff .t;y/ W t 2 Œa;b�; y 2Dg; (5.5)

with some non-negative square matrices Kg and Kh of dimension n. Then the exact
and approximatathe determining functions defined by (4.4), (4.9) and (5.3), (5.2)
satisfy the following estimates for any .´;�/ 2Da�Db and m� 1:

j�.´;�/��m.´;�/j �
10.b�a/2

27
KQm .1n�Q/

�1 ıŒa;b�;D.f /; (5.6)

j�.´;�/��m.´;�/j �
10.b�a/2

27
.KgCKhK/Q

m .1n�Q/
�1 ıŒa;b�;D.f /;

(5.7)

where the matrix Q and the vector ıŒa;b�;D.f / are given in (3.4) and (2.4) respect-
ively.

Proof. Let us fix an arbitrary .´;�/ 2 Da �Db: Using the Lipschitz condition
(2.3), estimate (4.5) and the equalityZ b

a

˛1.t;a;b/dt D
.b�a/2

3
; (5.8)
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where ˛1.�;a;b/ is given in (4.6), we have

j�.´;�/��m.´;�/j D

ˇ̌̌̌Z b

a

f .s;xm .s;´;�//ds�

Z b

a

f .s;x1 .s;´;�//ds

ˇ̌̌̌
�K

Z b

a

10

9
˛1.s;a;b/Q

m .1n�Q/
�1 ıŒa;b�;D.f /ds

D
10.b�a/2

27
KQm .1n�Q/

�1 ıŒa;b�;D.f /;

which proves the inequality in (5.6).
From (4.8) and (5.2) using the Lipschitz condition for g and the relations (4.5),

(5.8 ) we obtain

j�.´;�/��m.´;�/j D

ˇ̌̌̌Z b

a

Œg.s;x1.s;´;�//Ch.s;f .s;x1.s;´;�///

�g.s;xm.s;´;�//�h.s;f .s;xm.s;´;�///�ds

ˇ̌̌̌
�Kg

Z b

a

jx1 .s;´;�/�xm .s;´;�/jds

CKhK

Z b

a

jx1 .s;´;�/�xm .s;´;�/jds

� .KgCKhK/

Z b

a

10

9
˛1.s;a;b/Q

m .1n�Q/
�1 ıŒa;b�;D.f /ds

�
10.b�a/2

27
.KgCKhK/Q

m .1n�Q/
�1 ıŒa;b�;D.f /;

that is, estimate (5.7) also holds. �

Based on the exact an approximate determining systems (4.7), , (4.8) and (5.1),
(5.2), let us fix an m and introduce the mappings H WDa�Db! R2n and
Hm WDa�Db! R2n by setting

H.´;�/ WD

0BB@ ��´�

Z b

a

f .s;x1 .s;´;�//dsZ b

a

Œg.s;x1 .s;´;�//Ch.s;f .s;x1 .s;´;�///�ds�d

1CCA (5.9)

and

Hm.´;�/ WD

0BB@ ��´�

Z b

a

f .s;xm .s;´;�//dsZ b

a

Œg.s;xm .s;´;�//Ch.s;f .s;xm .s;´;�///�ds�d

1CCA (5.10)



732 MIKLÓS RONTÓ AND YANA VARHA

for any .´;�/ 2Da�Db . Recall that x1.�;´�;��/ is the limit function of the recur-
rence sequence (4.1).

We see from Theorem 2 that the critical points of the vector field H determine
solutions of the integral boundary value problem (3.1), (3.2). The next statement
establishes a similar result based upon properties of the vector field Hm explicity
known from (5.10).

Theorem 4. Assume that the conditions of Lemma 1 hold. Let, moreover, one can
specify an m� 1 and a set ˝ � R2n of form

˝ WDD1�D2 (5.11)

whereD1 �Da; D2 �Db are certain bounded open sets such that the mappingHm
satisfies the relation

jHmjB@˝

10.b�a/2

27

�
KQm .1n�Q/

�1 ıŒa;b�;D.f /

.KgCKhK/Q
m .1n�Q/

�1 ıŒa;b�;D.f /

�
(5.12)

on @˝. If, in addition,
deg.Hm;˝;0/¤ 0; (5.13)

then there exists a pair .´�;��/ from D1�D2 for which the function

x�.�/ WD x1.�;´
�;��/ (5.14)

is a solution of the integral boundary value problem (3.1), (3.2).

In (5.12), @˝ is the boundary of ˝ and the binary relation B@˝ is defined [2]
as follows: functions u D .ui /2niD1 W R

2n! R2n and v D .vi /2niD1 W R
2n! R2n are

said to satisfy the relation u B@˝ v if and only if there exists a function k W @˝ !
f1;2; : : : ;2ng such that uk.´/.´/ > vk.´/.´/ at every point ´ 2 @˝.

Remark 3. The degree in (5.13) is the Brouwer degree because all the vectors fields
are finite-dimensional. Likewise, all the terms in the right-hand side of (5.12) are
computed explicitly (e. g., by using computer algebra systems).

Proof of Theorem 4. We shall use Lemma 1 stated above. By analogy to [2, 4,
8], we shall prove that the vector fields H and Hm; given by (5.9) and (5.10) are
homotopic. For this purpose, we consider the linear deformation determined by the
family of mappings

	# .´;�/DHm.´;�/C# ŒH.´;�/�Hm.´;�/� ; .´;�/ 2 @˝; (5.15)

for # 2 Œ0;1�. Obviously, 	# is a continuous mapping on @˝ for every # 2 Œ0;1�

and, moreover,
	0 DHm; 	1 DH

on @˝:
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For arbitrary # 2 Œ0;1� and .´;�/ 2 @˝; we have

j	#.´;�/j D jHm.´;�/C# ŒH.´;�/�Hm.´;�/�j

� jHm.´;�j� jH.´;�/�Hm.´;�/j : (5.16)

On the other hand, by estimates (5.6) and (5.7) of Lemma 1, we have the component-
wise inequalities

jH.´;�/�Hm.´;�//j�
10.b�a/2

27

�
KQm .1n�Q/

�1 ıŒa;b�;D.f /;

.KgCKhK/Q
m .1n�Q/

�1 ıŒa;b�;D.f /

�
:

Therefore, it follows from (5.12) and (5.16) that

j	# jB@˝ 0 (5.17)

for any # 2 Œ0;1�. Here, 0 stands for the zero column vector of dimension 2n. Rela-
tion (5.17) implies that 	# dos not vanish on @˝ for any � , i. e., deformation (5.15)
is non-degenerate. Thus, H is homotopic to Hm and, using assumption (5.13) and
the property of invariance of the Brouwer degree under homotopy, we conclude that

deg.H;˝;0/D deg.Hm;˝;0/¤ 0:

The classical topological result (see, e. g., [1, Theorem A2.4]) then guarantees the
existence of a pair .´�;��/ 2 ˝ satisfying the equation H.´�;��/ D 0: Therefore,
the pair .´�;��/ satisfies the system of determining equations (4.7), (4.8).

Applying now Theorem 2, we find that the function (5.14) is an absolutely con-
tinuous solution of integral boundary value problem (3.1), (3.2). �

Remark 4. Theorem 1 does not guarantee the convergence of sequence (4.1) without
assumption (3.5). In the case where condition (3.5) for the matrix Q given in (3.4)
does not hold, the limitation can be overcome by using a suitable parametrization
and applying the interval halving technique introduced in [5,8] for periodic boundary
value problems.

Using this approach, the smallness condition (3.5) can be weakened to the inequal-
ity

r

�
3.b�a/

20
K

�
< 1:

6. SCHEME OF ANALYSIS OF THE PROBLEM

on Theorem 4 consists in carrying out the following:

1. Choose the vector � and compute the vector ıŒa;b�;D.f / according to (2.4).
2. Check the fulfilment of inequality (3.3), construct the function xm.�;´;�/

analytically (e. g., by using computer algebra systems) for a certain fixed
value mDm0, keeping ´ and � as parameters.
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3. Select a suitable set ˝ and verify conditions (5.12), (5.13) for mDm0.
To verify condition (5.12) of Theorem 4 one has to use the reccurence

formula (4.1) to compute the functions xm.�;´;�/ analytically, depending on
the parameters ´ and �, and, at every point .´;�/ of @˝, verify whether
at least one component of the 2n-dimensional vector jHm.´;�/j is strictly
greater than the corresponding component of the vector at the right-hand side
of (5.12).

4. Verify the validity of (5.13).
This is rather difficult problem in general. However, there are sufficient

conditions applicable in a number of important cases. In the smooth case, it
follows directly from the definition of the topological degree [1, Definition
A2.1] that if the Jacobian matrix of the functionHm in (5.10) is non-singular
at its isolated zero . Ńm; N�m/, i. e.,

det
@

@.´;�/
Hm . Ńm; N�m/¤ 0; (6.1)

then inequality (5.13) holds. In (6.1), the symbol @=@.´;�/ means the deriv-
ative with respect to the vector of variables .´1; : : : ;´n;�1; : : : ;�n/.

In particular, when Hm is odd mapping, i.e.

Hm .�´;��/D�Hm.´;�/

for all .´;�/ 2˝, then, according to Borsuk theorem (see, e. g., [1, Theorem
A2.12]), its Brouwer degree is an odd number and, therefore, is different
from zero.

Theorem 1 can be complemented by the following natural observation. Let . Ó ; O�/2
Da �Db be a root of the approximate determining system (5.1), (5.2) for a certain
m. The observation in Section 5 suggests to consider Ó and O� as approximations of
the values of a solution of problem (3.1), (3.2), respectively, at a and b. Furthermore,
the function

Qx.t/ WD xm.t; Ó ; O�/; t 2 Œa;b�; (6.2)

defined according to (4.1) can be regarded as the mth approximation to a solution of
the integral boundary value problem (3.1), (3.2). The latter is justified by the estimate

jx1.t; Ó ; O�/�xm.t; Ó ; O�//j �
10

9
˛1.t;a;b/Q

m .1n�Q/
�1 ıŒa;b�;D.f / (6.3)

implied directly by inequality (4.5) of Theorem 1 for any t 2 Œa;b� andm� 0. Recall
that, in (6.3), Q and ıŒa;b�;D.f / are given by (3.4) and (2.4) respectively.
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7. AN EXAMPLE WITH TWO-SOLUTIONS

Let us apply the numerical-analytic approach desribed above to the system of dif-
ferential equations

‚
x01.t/D x

2
2.t/�

t

5
x1.t/C

t3

100
�
t2

25
;

x02.t/D
t2

10
x2.t/C

t

8
x1.t/�

21

800
t3C

1

16
tC

1

5
; t 2

�
0;
1

2

�
;

(7.1)

considered under the integral boundary conditions
„Z 1

2

0

sx1.s/x2.s/ds D�
197

48000
;Z 1

2

0

s2x22.s/ds D
1

4000
:

(7.2)

This boundary value problem was considered in [9]. Clearly, (7.1) is a particular case
of (3.1), (3.2) with a WD 0, b WD 1=2,

f .t;x1;x2/ WD

0BB@ x22 �
t

5
x1C

t3

100
�
t2

25
t2

10
x2C

t

8

�
x1C

1

2

�
�
21

800
t3C

1

5

1CCA ; (7.3)

g.t;x1;x2/ WD
�
tx1x2

t2x2
2

�
, h WD 0, and d WD

�
�197=48000
1=4000

�
:

Following to (3.6), (3.7), introduce the parameters ´D col.´1;´2/ and �D col.�1;�2/:
Let us consider the following choice of the convex subsets Da and Db , where one
looks the values x.a/ and x.b/:

Da DDb D f.x1;x2/ W �0:55� x1 � 0:45; �0:2� x2 � 0:15g : (7.4)

In this case, according to (2.1), we have

Da;b DDa DDb: (7.5)

For � involved in (2.2) and (3.3), we choose the value

� WD col.0:2;0:2/: (7.6)

Then, in view of (7.4)–(7.6), the set (2.2) takes the form

D D f.x1;x2/ W �0:75� x1 � 0:65; �0:4� x2 � 0:35g (7.7)

A direct computation shows that the Lipschitz condition (2.3) for f given by (7.3)
on D of form (7.7) holds with

K D

�
1=10 9=10

1=16 1=40

�
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and, therefore, by (3.4), QD 3
20

�
1=10 9=10
1=16 1=40

�
and r.Q/D 0:045 < 1: Furthermore, in

view of (7.7) and (2.4),

ıŒa;b�;D.f /D
1

2

�
max

.t;x/2Œ0; 1
2 ��D

f .t;x/� min
.t;x/2Œ0; 1

2 ��D
f .t;x/

�
D

�
0:15

0:053125

�
and, by (7.6),

b�a

2
ıŒa;b�;D.f /D

�
0:0375

0:01328125

�
� �:

Note that f is continuous.
We thus see that all the conditions of Theorem 1 are fulfilled, and the sequence of

functions (4.1) for this example is convergent.
Using (4.1) and applying Maple 13 at the first iteration (mD 1) we get [9]

x11.t;´;�/D ´1C
t4

400
C
1

3

�
.�2´2C2�2/

2
C
2

5
.´1��1/�

1

25

�
t3

C
1

2

�
2´2.�2´2C2�2/�

1

5
´1

�
t2C´22t �2t

�
�

29

19200

C
1

24
.�2´2C2�2/

2
�

1

120
´1�

1

60
�1

C
1

4
´2.�2´2C2�2/C

1

2
´22

�
C2t.�1�´1/ (7.8)

and

x12.t;´;�/D ´2C
1

5
tC

1

4

�
1

5
.�2�´2/�

21

800

�
t4

C
1

3

�
1

4
.�1�´1/C

1

10
´2

�
t3C

1

16

�
´1C

1

2

�
t2

�2t

�
5499

51200
C

1

960
´2C

1

320
�2

C
1

192
´1C

1

96
�1

�
C2t.�2�´2/; (7.9)

where we use the notation xmi D col.xm;1;xm;2/ for any m. Using (7.8) and (7.9)
to form the approximate determining system (5.1), (5.2) for m D 1 and solving the
latter numerically, we find its roots ´1 D col.´11;´12/ and �1 D col.�11;�12/:

´11 ��0:5000145056; ´12 � 5:750026703 �10
�7;

�11 ��0:4875143149; �12 � 0:1000004007:
(7.10)
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Substituting (7.10) into (7.8), we obtain the first and second components of the first
approximation Qx1 D col. Qx11; Qx12/ to a solution of the given integral boundary value
problem (7.1), (7.2):

Qx11.t/D�0:5000145056C .1=400/t
4
�0:001666738533t3

C0:05000156555t2C0:00010378326t;

Qx12.t/D 5:750026703 �10
�7
C0:1999349926t �0:001562508715t4

C0:0010417017t3�9:066 �10�7t2:

(7.11)

Let us now show that problem (7.1), (7.2) indeed has a solution in a neighbourhood
of Qx1. For this purpose, we analyse the corresponding properties of first approxima-
tion given in (7.8) and use Theorem 4.

We choose the domain ˝ WDD1�D2 in (5.11) as a direct product of rectangles

D1 WD f.´1;´2/ W �0:55� ´1 � 0:1 I �0:1� ´2 � 0:05g �Da; (7.12)

D2 WD f.�1;�2/ W �0:55� �1 � 0I 0� �2 � 0:12g �Db: (7.13)

The the boundaries @D1 and @D2 thus have, respectively, the equations

f´1 D�0:55; �0:1� ´2 � 0:05g;

f´2 D 0:05; �0:55� ´1 � 0:1g

f´1 D 0:1; �0:1� ´2 � 0:05g

f´2 D�0:1; �0:55� ´1 � 0:1g

(7.14)

and
f�1 D�0:55; 0� �2 � 0:12g;

f�2 D 0:12; �0:55� �1 � 0g;

f�1 D 0; 0� �2 � 0:12g;

f�2 D 0; �0:55� �1 � 0g:

(7.15)

Consequently, the fulfilment of the relation (5.12) for the first iteration (mD 1) should
be checked for all values (7.14) and (7.15).

Direct computations for this example give that g 2 LipKg
.D/ with D given by

(7.7) and

Kg D

�
0:2 0:375

0 0:2

�
:

Furthermore,

10.b�a/2

27

�
KQ.1n�Q/

�1 ıŒa;b�;D.f /

KgQ.1n�Q/
�1 ıŒa;b�;D.f /

�
D

0BB@
2:32707024 �10�4

6:065016891 �10�4

2:406173922 �10�4

3:155040783 �10�5

1CCA : (7.16)



738 MIKLÓS RONTÓ AND YANA VARHA

Comparing the terms involved in (5.12) at the points determined by equations (7.14)
and (7.15) and using (7.16), we find that relation (5.12) is satisfied in this case.

In order to verify condition (5.13), we use the differentiability of f . We form the
Jacobi matrix

@H1

@.´;�/
D

0BBBB@
@H11

@´1

@H11

@´2

@H11

@�1

@H11

@�2
@H12

@´1

@H12

@´2

@H12

@�1

@H12

@�2
@H13

@´1

@H13

@´2

@H13

@�1

@H13

@�2
@H14

@´1

@H14

@´2

@H14

@�1

@H14

@�2

1CCCCA ; (7.17)

where

H11.´;�/D �1�´1�

Z b

a

f1.t;x11.t;´;�/;x12.t;´;�//dt;

H12.´;�/D �2�´2�

Z b

a

f2.t;x11.t;´;�/;x12.t;´;�//dt;

H13.´;�/D

Z b

a

g1.t;x11.t;´;�/;x12.t;´;�//dtC
197

48000
;

H14.´;�/D

Z b

a

g2.t;x11.t;´;�/;x12.t;´;�//dt �
1

4000

with f and g as above. At point (7.10), matrix (7.17) has the value0BB@
�0:991664946 0:0165680208 1:016639475 0:0334006242

�0:005205078 �1:001032832 �0:0104752604 0:9967402959

�0:00208135681 �0:02066615277 �0:00609620114 �0:041047519

�0:00000185526 �0:00124495269 0:00001482908 0:0049824817

1CCA :
The determinant of the above matrix is equal to 5:0813401 � 10�5 and, in particular,
is different from 0. Recalling Section 6, we conclude that (6.1) holds with Ń1 D
col.´11;´12/ and N�1 D col.�11;�12/ given by (7.10), whence (5.13) follows. Thus,
by virtue of Theorem 4, there exist a pair .´�;��/2D1�D2 such that function (5.14)
is a solution of the integral boundary value problem (7.1), (7.2).

It is easy to verify that the pair of functions

x�1 .t/D
t2

20
�
1

2
; x�2 .t/D

t

5
(7.18)

is a solution of the integral boundary value problem (7.1), (7.2) and its values at 0
and 1=2,

x�1 .0/D�0:5; x�2 .0/D 0;

x�1

�1
2

�
D�

39

80
; x�2

�1
2

�
D

1

10
;

belong to the respective sets D1 and D2 of form (7.12) and (7.13).
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Comparing (7.11) with (7.18), we find that the error of the first approximation is
estimated as

max
t2Œ0; 1

2
�

ˇ̌
x�1 .t/�x11.t/

ˇ̌
� 2 �10�5; max

t2Œ0; 1
2
�

ˇ̌
x�2 .t/�x12.t/

ˇ̌
D 6 �10�6:

The graphs of the first approximation and the exact solution of the given boundary
value problem are shown on Figure 1.

FIGURE 1. The components of the exact solution (solid line) and its
first approximation (drawn with dots)

According to Theorems 2 and 3, the number of solutions of the algebraic detemin-
ing system (4.7), (4.8) coincides with the number of solutions of the given integral
boundary value problem in the domain under consideration. Computations show
that, along with solution (7.10), the approximate determining system of algebraic
equations (5.1), (5.2) for mD 1 has another solution

Ó11 � 0:3923536713; Ó12 ��0:1570525052;

O�11 � 0:3868493960; O�12 ��0:04383992217:
(7.19)

Instead of ˝ WDD1�D2 defined by (7.12), (7.13), we now choose Q̋ DD3�D4
with

D3 D f.´1;´2/ W 0� ´1 � 0:42; �0:2� ´2 � �0:12g ; (7.20)

D4 D f.�1;�2/ W 0� �1 � 0:41; �0:1� �2 � 0:05g : (7.21)
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The equations of @D3 and @D4 then have the form

f´1 D 0; �0:2� ´2 � �0:12g;

f´2 D�0:12; 0� ´1 � 0:42g;

f´1 D 0:42; �0:2� ´2 � �0:12g;

f´2 D�0:2; 0� ´1 � 0:42g

(7.22)

and
f�1 D 0; �0:1� �2 � 0:05g;

f�2 D 0:05; 0� �1 � 0:41g;

f�1 D 0:41; �0:1� �2 � 0:05g;

f�2 D�0:1; 0� �1 � 0:41g:

(7.23)

Checking (5.12) for the first iteration of form (7.8) at the boundary points (7.22) and
(7.23), we find that (5.12) is satisfied. A direct computation shows that (5.13) also
holds. Consequently, by Theorem 4, there exist a pair . Ó�; O��/ 2D3�D4 such that
the function

Ox�.t/D x1.t; Ó
�; O��/; t 2 Œ0;1=2�; (7.24)

is a solution of the integral boundary value problem (7.1), (7.2) with . Ox�1.0/; Ox
�
2 .0// 2

D3, . Ox�1 .1=2/; Ox
�
2 .1=2/ 2D4. By substituting (7.19) into the first iteration (7.8), we

obtain the following first approximation to solution (7.24) of (7.1), (7.2):

Ox11.t/D 0:3923536713C .1=400/t
4
C0:004490021967t3

�0:07479600670t2C0:02495444725t;

Ox12.t/D�0:1570525052C0:2000752910t �0:0009018708475t
4

�0:005693773113t3C0:05577210445t2:

(7.25)

We see that the values of (7.24) at 0 and 1=2,

Ox11.0/D 0:39235367135; Ox12.0/D�0:1570525052;

Ox11

�1
2

�
D 0:3868493959; Ox12

�1
2

�
D�0:04383992216

belong to D3 and D4 of form (7.20) and (7.21) respectively. By analogy, we can
obtain the second and third approximations (mD 2;3) to solution (7.24).

The residual obtained as a result of substitution of the third approximation to solu-
tion (7.24) into the given differential system (7.1) is estimated as follows:

max
t2Œ0; 1

2 �

ˇ̌̌
x031.t/�x

2
32.t/C

t

5
x31.t/�

t3

100
C
t2

25

ˇ̌̌
D 3:230806 �10�8;

max
t2Œ0; 1

2 �

ˇ̌̌
x032.t/�

t2

10
x32.t/�

t

8
x31.t/C

21

800
t3�

1

16
t �

1

5

ˇ̌̌
D 5:55695 �10�9:
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The graphs of first and third approximations to the second solution of the given
boundary value problem are shown on Figure 2.

FIGURE 2. The components of the first (drawn with dots) and third
(solid line) approximations to the second solution
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[8] A. Rontó, M. Rontó, and N. Shchobak, “Constructive analysis of periodic solutions
with interval halving,” Bound. Value Probl., pp. 2013:57, 34, 2013. [Online]. Available:
http://dx.doi.org/10.1186/1687-2770-2013-57

http://dx.doi.org/10.1155/2011/326052
http://dx.doi.org/10.1186/1687-2770-2011-58
http://dx.doi.org/10.1186/1687-2770-2013-57
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E-mail address: matronto@uni-miskolc.hu

Yana Varha
Uzhgorod National University, 14 Universitetska St., 88000 Uzhgorod, Ukraine
E-mail address: jana.varha@mail.ru

http://dx.doi.org/10.1142/9789812813602

	1. Introduction
	2. Notation and symbols
	3. Problem setting and reduction to a model boundary condition 
	4. Some results from RVaMa
	5. Solvability analysis based on the approximate determining system
	6. Scheme of analysis of the problem
	7. An example with two-solutions 
	References

