
NEW EVOLUTIONARY OPTIMIZATION TECHNIQUES AND TEST

FUNCTIONS FOR THEIR EVALUATION

Gábor Zoltán Marcsák
1
, Csaba Barcsák

2
, Károly Jármai

3
,

1
 MSc. student,

2
 software engineer, Evosoft Ltd.,

3
 Professor, University of Miskolc,

Egyetemváros, Hungary

1. INTRODUCTION

The process of optimization is finding the best solution to a given problem, when

the amount of available resources is often restricted. Despite the rapid development

of computer science, most optimization problems can't be solved by evaluating all

feasible solutions. For example, the class of NP-hard problems, such as the

Traveling salesman problem (also known as TSP), might have an enormously large

search space, which requires exponential computation time to be fully explored. To

solve these kinds of problems, many heuristic algorithms have been developed.

Heuristic algorithms can find approximate solutions, even when the search space is

excessively huge. In this paper, we benchmarked twelve optimization techniques, to

compare their efficiency in finding the global minima of different continuous

mathematical test functions. Mathematical function optimization is very important,

because most real world optimization problems can be modelled in this general

framework. Numerous mathematical test functions can be found in the literature,

additionally we created a software solution, which utilizes a novel method to

construct customized test functions.

2. BENCHMARK PROBLEMS

As mentioned before, a lot of mathematical test functions can be found in the

literature [1]. The complexity of test functions is determined by the number of

variables and the number and distribution of local extremes. We studied continuous

test functions with two variables, since those problems can be plotted as 3d

surfaces. Table 1 summarizes the ten test functions we used in alphabetical order.

The Ackley's function has a nearly flat outer region, and a large valley at its centre.

This widely used multimodal test function can easily trap heuristic algorithms at

one of its local optima. De Jong's function is a very simple convex, unimodal

benchmark problem. Drop-Wave function is very complex, with expanding ripples,

like when an object is dropped into liquid surface. Easom's function is unimodal

like De Jong's, however more complicated, because the global optima is relatively

small compared to the search space. Griewangk's function looks similar to De

Jong's either, but it has a rugged surface with many regularly distributed local

optima. Matyas's function is a plate shaped problem, it doesn't have any local

extremes, only the global one, which is relatively easy to find. However,

convergence to the global optima is difficult, so that this is a great benchmark

problem to measure the accuracy and convergence rate of search algorithms.

Rastrigin's function, also known as egg holder is a widely used, highly multimodal

problem with regularly distributed local extremes. Rosenbrock's valley is unimodal,

the global minimum can be found in a narrow, parabolic valley. Schaffer's second

function is an extremely noisy optimization problem, with a lot of local optima very

close to each other. Last but not least, Three-hump camelback looks very much like

Rosenbrock's valley, however it has two local extremes.

Table 1.

Numerical data of benchmark problems

Name Definition
Search range and

global optimum

Ackley's

function (F1)

 () (√

∑(

)

 (

∑ ()) ()

f()=0

De Jong's

function (F2)
 () ∑

f()=0

Drop-Wave

function (F3)
 ()

 (√

(

)

f()=0

Easom's

function (F4)

 () () ()

 (() ())

f()=0

Griewangk's

function (F5)
 ()

 ∑

 ∏ (

√
)

f()=0

Matyas's

function (F6)
 () (

)

f()=0

Rastrigin's

function (F7)
 () ∑

 ()

f()=0

Rosenbrock's

valley (F8)
 () ∑ (

) ()

f()=0

Schaffer's N. 2.

function (F9)
 ()

 (

)

 (

)

f()=0

Three-hump

camelback

(F10)

 ()

f()=0

3. COMPOSITION OF TEST FUNCTIONS

In [2] the authors proposed a novel theoretical method to create more complex test

functions from given basis functions. A practical framework has been described in

[3], which extends the above theory. We have developed a software solution, which

utilizes the practical framework to easily create customized arbitrarily difficult test

problems.

3.1 Theoretical Method

In order to generate arbitrarily difficult complex test functions, the algorithm

requires several input parameters:

 [Xmin, Xmax]
D
: search range of the complex function

 D: number of dimensions

 fi(θ): list of basic functions

 [xmin, xmax]
D
: search range of the basic functions

 oi: the position of the global optima for the i-th basic function

 bias (ψ): a vector to define the global optima. It allows the user to shift the

optimum values of the basic functions.

To define the position of global and local optimums, we have to shift the value of

the basic function's global optimum points. In order to achieve this, the basic

functions have to be evaluated outside the defined search range. Therefore the given

global optimum positions of the basic functions have to be independent of the

search range. The complex test functions can be determined using the following

formulas:

 () ∑[(
 ()

 ()
)] (1)

 (

)

 (2)

Where wi is the weighting function, which ensures to keep the predefined optimum

positions and values. The closer we get to a basic functions global optimum position

(oi), the bigger weighting coefficient it gets. At the same time, the other basic

functions get smaller weighting coefficients. We used three different types of

weighting functions.

3.1.1 Euclidean distance-based weighting

The first weighting function is based on the Euclidean distance between the

complex function's given point () and the optimum points (oi) of the basic

functions.

 () (3)

We have to normalize the distances:

∑
 (4)

 (5)

If (), and is the number of basic functions:

 ()

()
 (6)

3.1.2 Gaussian weighting

Smoother edges can be achieved by using the Gaussian functions to determine

weighting coefficients.

()

 (7)

3.1.3 Gabor-like weighting

We can create more difficult optimization problems if the weighting function

generates noise. However we have to make sure not to shift the original optimum

values. The weighting function should return values between 0 and 1, its global

maxima should be at the complex function's global optimum.

 |∏ (())

∑ ()

| (8)

Where () is the k-th element of the vector, is the noisiness parameter, and

 is the convergence range. Increasing the parameter results in more noise. If

 (), and is the number of basic functions:

 ()

()
 (9)

3.2 Practical Example

We have generated a complex test function to demonstrate the method and expand

the number of benchmark problems used in this paper. The input parameters are the

following:

 : the search range of the complex function is

 : the number of dimensions is 2

 (): we used 7 basic functions, all of them are Ackey's functions (F1).

 : since we shift the optimum points of the basic functions, we don't

have to define the basic functions' search range.

 (): the coordinates for the basic functions: [7,5; 5; 5; 0; -7,5; -5; 0]

 (): the coordinates for the basic functions: [0; 5; -5; -5; 0; 5; 0]

 bias (): a vector to shift the basic functions: [3; 1; 2; 0,5; 1; 4,5; 0]

Table 2.

Surface and contour plot of complex benchmark problems

Name Surface plot Contour plot

Complex

function with

Euclidean

distance-based

weighting

(F11)

Complex

function with

Gaussian

weighting

(F12)

Complex

function with

Gabor-like

weighting
()

(F13)

In Table 2 you can see the generated Complex functions, which all consists of 7

Ackley's basic functions. The different characteristics of the three weighting

functions are also observable. The basic functions global optimum values have been

shifted, therefore the complex function's global optimum value is () , can be

found at , coordinates.

3.4 Novel software solution to easily generate complex test functions

We have developed a software solution which utilizes the above framework to

easily create customized arbitrarily difficult test problems. All the coding was done

in C#, the program uses the .NET Framework. The best feature of the software is

the automatic source code generation. As the user builds the complex function in a

visual editor, at the same time the program generates the function's C# source code.

Therefore the newly created optimization problem can be used straight away.

4. MAIN CHARACTERISTICS OF HEURISTIC ALGORITHMS

As mentioned before, the biggest advantage of heuristic algorithms is that they can

find approximate solutions, even when the search space is excessively huge.

However, finding the global optimum cannot be guaranteed, since they don't

evaluate all feasible solutions. A good heuristic algorithm has to maintain balance

between local search and global search. On one hand, it has to explore the entire

search space properly, on the other hand search around the current best positions

efficiently. In other words, quickly find regions with quality solutions, and don't

waste too much time in low quality areas. Most of the time, heuristic algorithms

have stochastic behaviour. Ideally, the final solutions, through slightly different,

will converge to the optimal solution of the given problem. However, the way

heuristic algorithms get to the solution is always a bit different because of the

stochastic factor. Nowadays a lot of nature inspired heuristic algorithms emerge.

We benchmarked twelve optimization techniques, like evolutionary (Differential

Evolution, Cultural Algorithm, Memetic Algorithm), physical (Simulated

Annealing, Harmony Search), biological (Artificial Immune Network) and swarm

intelligence (Bacterial Foraging, Bees Algorithm, Krill Herd, Particle Swarm)

optimization methods. We made the algorithms' source code available on the

Internet. The algorithms search for the global minima, if the Rastrigin's function in

the source code [4].

4.1 Benchmarked heuristic algorithms

- Artificial Immune Network (AiNet) algorithm was developed by de Castro and

Von Zuben to solve a clustering problem in 2000 [5]. According to its

principles, the algorithm is related to the field of Artificial Immune Systems.

- Bacterial Foraging Algorithm (BFOA) was first described by Liu and Passino

in 2002 [6]. It's a relatively new swarm intelligence search algorithm. These

techniques use the collective intelligence of numerous homogenous individuals.

In principle, an individual entity may not be able to solve a problem on its own.

However, if a large number of individuals form a group, the group's collective

intelligence may be enough to solve the task. Bacterial Foraging is based on the

foraging behavior of E. Coli bacteria colonies.

- Bees Algorithm (BA) was published by Pham in 2005 [7]. Primarily it was

developed to search for the global optima of continuous mathematical

functions. It belongs to the field of swarm intelligence procedures. The Bees

Algorithm, as the name suggests, was inspired by the foraging behavior of bees.

- Cultural Algorithm (CA) was described by Reynolds in 1994 [8]. This

evolutionary algorithm simulates the cultural evolution of human society.

- Differential Evolution (DE) algorithm was developed by Storn and Price in

1995. It belongs to the field of evolutionary algorithms. Differential Evolution

is mainly based on Darwin's Theory of Evolution, because its main principle is

natural selection [9].

- Harmony Search (HS) was published by Geem, Kim and Loganathan in 2001

[10]. It was inspired by Jazz musicians. When they start a musical performance,

they adapt their music to the band, creating musical harmony. If a false sound

occurs, the band makes modifications to improve their performance.

- Krill Herd (KH) algorithm is a novel swarm intelligence method, developed by

Gandomi and Alami in 2012 [11]. It is inspired by the foraging behavior of the

Antarctic krill (Euphausia superba). These krill search for food in dense

swarms, the number of krill can be up to 10-30 thousand per cubic meters. On

one hand, the swarm guarantees protection against predators, on the other hand

krill can find food easier, because the swarm can scout larger areas.

- Memetic Algorihm (MA) was developed by Moscato in 1989 [12]. The

algorithm simulates the creation and inheritance of cultural information among

individuals. Meme is the basic unit of cultural information (an idea, discovery,

etc), which name derives from the biological term gene.

- Nelder-Mead (NM) algorithm was named after its creators. Nelder and Mead

created this heuristic in 1965 [13]. In the literature its often referred as Amoeba

Method. Basically Nelder-Mead algorithm is a simplex search method [14].

- Particle Swarm Optimization (PSO) was developed by Eberhart and Kennedy.

Nowadays its one of the most promising metaheuristic optimization algorithms.

Particle Swarm's operation was inspired by the foraging movement of bird and

fish swarms [15].

- Random Search (RS) algorithm, as the name suggests, is a simple random

search algorithm. It takes any position in the search space with equal

probability. The new solutions are always independent from the previous ones.

- Simulated Annealing (SA) method was described by Kirkpatrick, Gelatt and

Vecchi in 1983. The operation of the algorithm is based on a physical

phenomenon. In metallurgy certain materials gain beneficial properties when

heated and then cooled under controlled conditions. The materials' crystal

structure is transformed during the process, because the particles take more

favorable positions. The heuristic algorithm emulates this process to search for

better solutions to a given problem [16].

5. NUMERICAL EXPERIMENTS

Benchmarking heuristic optimization algorithms is a quite difficult and complex

process. Due to the algorithms' stochastic factors, we had to use statistical methods

to present satisfactory results. The heuristic algorithms did 50 Monte Carlo searches

per test function. We specified the iteration limit for each search to be 100. The

input parameters for the algorithms are determined based on the proposals found in

the literature indicated.

5.1 Statistical results

We created a statistical table, which summarizes the performance of algorithms

broken down by test functions. Table 3. gives an overview regarding algorithms'

efficiency and reliability. The values are normalized, so that the optima in each row

is 0, and the maximum is 1. These are not the absolute minima found by each

algorithm, but the average minima for 50 Monte Carlo simulations.

Table 3.

Mean normalized optimization results for thirteen benchmark functions.

 AiNet BFOA BA CA DE HS KH MA NM PSO RS SA

F1 0,58 1 0 0,10 0 0,77 0,01 0,11 0 0 0,40 0,65

F2 0,12 0 0 0,29 0 1 0 0,01 0 0 0,08 0,03

F3 0,28 0,56 0 0,31 0,04 1 0,11 0,16 0,35 0 0,47 0,71

F4 0,28 0,56 0 0,31 0,04 1 0,11 0,16 0,35 0 0,47 0,71

F5 0,43 0,05 0,04 0,06 0 0,68 0,10 0,30 1 0 0,05 0,27

F6 0,08 0,17 0 0,01 0 0,13 0 0,01 0,01 0 0,04 1

F7 0,12 0 0 0,07 0,06 1 0,01 0,13 0 0 0,04 0,15

F8 0,09 0 0,05 0,08 0,01 0,82 0,01 1 0 0 0,07 0,01

F9 0 0,04 0 0,11 0,01 1 0,04 0,07 0,41 0 0,02 0,37

F10 0 0 0 0,05 0,02 1 0 0,03 0,29 0 0,01 0,07

F11 0,64 1 0 0,10 0 0,77 0,01 0,11 0 0 0,40 0,65

F12 0,10 0 0 0,10 0 1 0,01 0,03 0,27 0 0,22 0,18

F13 0,35 0,19 0 0,32 0 1 0,03 0,18 0,23 0,01 0,35 0,24

Σ 2 5 11 0 7 0 3 0 5 12 0 0

We used convergence plots in Table 4. to measure the convergence rate of search

algorithms. Convergence rate shows how quickly the heuristic algorithms can find

the optimum. The data points are the best fitness found in each iteration, averaged

for 50 Monte Carlo simulations.

Table 4.

Convergence plots for Ackley's (F1) and Complex (F11, F12, F13) functions

Name Convergence plot

Ackley's

function (F1)

Complex

function with

Euclidean

distance-

based

weighting

(F11)

Complex

function with

Gaussian

weighting

(F12)

Complex

function with

Gabor-like

weighting
(

) (F13)

0,0000001

0,000001

0,00001

0,0001

0,001

0,01

0,1

1

10

100

0 10 20 30 40 50 60 70 80 90

B
e

st
 f

it
n

e
ss

 v
al

u
e

Iteration number

AiNet BFOA BA CA DE HS

KH MA NM PSO RS SA

0,0001

0,001

0,01

0,1

1

10

0 10 20 30 40 50 60 70 80 90

B
e

st
 f

it
n

e
ss

 v
al

u
e

Iteration number

AiNet BFOA BA CA DE HS

KH MA NM PSO RS SA

0,00001

0,0001

0,001

0,01

0,1

1

10

0 10 20 30 40 50 60 70 80 90

B
e

st
 f

it
n

e
ss

 v
al

u
e

Iteration number

AiNet BFOA BA CA DE HS

KH MA NM PSO RS SA

0,001

0,01

0,1

1

10

0 10 20 30 40 50 60 70 80 90

B
e

st
 f

it
n

e
ss

 v
al

u
e

Iteration number

AiNet BFOA BA CA DE HS

KH MA NM PSO RS SA

5.2 Benchmark conclusion

We used twelve search algorithms for the thirteen benchmark problems. The test

functions had quite diverse characteristics, like unimodal and multimodal problems

with varying number and distribution of local extremes. Three complex benchmark

problems were constructed by us with the software we created. After we examined

the significant amount of statistical data, we get a picture of the algorithms' overall

performance. If we take a look at Table 3., we can see the superiority of swarm

intelligence methods. Bees Algorithm (BA) and Particle Swarm Optimization

(PSO) almost always found the global optima, even in case of very difficult and

noisy functions. The third best algorithm was an evolutionary method, the

Differential Evolution, however sometimes it trapped at local optima. To improve

the performance of slowly converging methods (HS, SA), we should increase the

number of iterations. The rate of convergence could be observed very well on the

convergence plots of Table 4. The three best algorithms' rate of convergence is

relatively fast, and this characteristic proved to be crucial for success. Furthermore,

the convergence plots showed the weighting functions really affect the difficulty of

complex functions. The averaged fitness function values revealed the Complex

function with Euclidean distance-based weighting (F11) was a thousand times

harder to solve then the basis function (F1). However the use of Gaussian weighing

function resulted in smoother edges, which decreased the number and distribution

of local extremes, making it easier to find the global optima for the search

algorithms. Probably the hardest test function was Complex function with Gabor-

like weighting, because the weighting function generated significant noise. In case

of this test problem, the best algorithm was Differential Evolution, however its

solution is ten times worse than the best algorithm of Euclidean distance-based

weighting. As final conclusion, we can say that the complex functions with

different weighting proved to be great benchmark problems.

6. SUMMARY

The field of numerical optimization is an always evolving science. Several new

evolutionary optimization techniques appeared lately. We created a software

solution, which provides practically endless possibilities to create arbitrarily

difficult complex test functions. We benchmarked twelve optimization algorithms

with thirteen test functions. In the future, we would like to create more difficult,

self-made test problems, and benchmark further heuristic techniques. Based on the

benchmark result, we will try to create novel, more efficient hybrid heuristic

algorithms, which could be utilized in real-life structural and logistical optimization

problems.

7. ACKNOWLEDGEMENTS

The research was supported by the TÁMOP 4.2.4.A/2-11-1-2012-0001 priority

project entitled ‘National Excellence Program - Development and operation of

domestic personnel support system for students and researchers, implemented

within the framework of a convergence program, supported by the European Union,

co-financed by the European Social Fund. The research was supported also by the

Hungarian Scientific Research Fund OTKA T 109860 project and was partially

carried out in the framework of the Center of Excellence of Innovative Engineering

Design and Technologies at the University of Miskolc.

8. REFERENCES

[1] MOLOGA M., SMUTNICKI C.: Test functions for optimization needs, 2005. pp. 1-10,

 www.bioinformaticslaboratory.nl

[2] LIANG J., SUGANTHAN N., DEB K.: Novel composition test functions for numerical

 global optimization, Swarm Intelligence Symposium, Proceedings, 2005. pp. 68-75.

[3] BARCSÁK CS., JÁRMAI K.: Benchmark for testing evolutionary algorithms,

 10th World Congress on Structural and Multidisciplinary Optimization, May 19 -24,

 2013, Orlando, Florida, USA

[4] C# source code of heuristic algorithms:
 https://drive.google.com/folderview?id=0BxE6yHbGFZBAOHBpN2VIV08yS0k&usp=sharing

[5] DE CASTRO L. N. and VON ZUBEN F. J.: An evolutionary immune network for data

 clustering. In Proceedings Sixth Brazilian Symposium on Neural Networks, IEEE Computer

 Society, 2000. pp. 84–89.

[6] LIU Y. and PASSINO K. M.: Biomimicry of social foraging bacteria for

 distributed optimization: Models, principles, and emergent behaviours, Journal of

 Optimization Theory and Applications, 2002. pp. 603–628.

[7] PHAM D. T., GHANBARZADEH A., KOC E., OTRI S., RAHIM S., and ZAIDI

 M.: The bees algorithm. Technical report, Manufacturing Engineering Centre, Cardiff

 University, 2005.

[8] REYNOLDS R. G.: An introduction to cultural algorithms. In Proceedings of the

 3rd Annual Conference on Evolutionary Programming, World Scientific Publishing,

 1994. pp. 131–139.

[9] STORN R. and PRICE K.:. Differential evolution: A simple and efficient adaptive

 scheme for global optimization over continuous spaces, Technical Report TR-95-

 012, International Computer Science Institute, Berkeley, CA, 1995.

[10] GEEM Z. W., KIM J. H., and LOGANATHAN G. V.: A new heuristic optimization

algorithm: Harmony search. Simulation, 76:60–68, 2001.

[11] GANDOMI A. H. and ALAVI A. H.: “Krill herd: a new bio-inspired optimization

 algorithm”, Communications in Nonlinear Science and Numerical Simulation, vol. 17, no.

 12, 2012. pp. 4831–4845.

[12] MOSCATO P.: On evolution, search, optimization, genetic algorithms and martial arts:

 Towards memetic algorithms. Technical report, California Institute of Technology, 1989.

[13] NELDER J. A.; MEAD R.: "A simplex method for function minimization". Computer

 Journal 7, 1965. pp. 308–313.

[15] KENNEDY J. and EBERHART R. C.: Particle swarm optimization, In Proceedings

 IEEE int’l conf. on neural networks Vol. IV, 1995. pp 1942–1948.

[16] KIRKPATRICK S.: Optimization by simulated annealing: Quantitative studies.

 Journal of Statistical Physics, 1983. pp 975–986.

