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1. INTRODUCTION 

 

The process of optimization is finding the best solution to a given problem, when 

the amount of available resources is often restricted. Despite the rapid development 

of computer science, most optimization problems can't be solved by evaluating all 

feasible solutions. For example, the class of NP-hard problems, such as the 

Traveling salesman problem (also known as TSP), might have an enormously large 

search space, which requires exponential computation time to be fully explored. To 

solve these kinds of problems, many heuristic algorithms have been developed. 

Heuristic algorithms can find approximate solutions, even when the search space is 

excessively huge. In this paper, we benchmarked twelve optimization techniques, to 

compare their efficiency in finding the global minima of different continuous 

mathematical test functions. Mathematical function optimization is very important, 

because most real world optimization problems can be modelled in this general 

framework. Numerous mathematical test functions can be found in the literature, 

additionally we created a software solution, which utilizes a novel method to 

construct customized test functions. 

 

2. BENCHMARK PROBLEMS 

 

As mentioned before, a lot of mathematical test functions can be found in the 

literature [1]. The complexity of test functions is determined by the number of 

variables and the number and distribution of local extremes. We studied continuous 

test functions with two variables, since those problems can be plotted as 3d 

surfaces. Table 1 summarizes the ten test functions we used in alphabetical order. 

The Ackley's function has a nearly flat outer region, and a large valley at its centre. 

This widely used multimodal test function can easily trap heuristic algorithms at 

one of its local optima. De Jong's function is a very simple convex, unimodal 

benchmark problem. Drop-Wave function is very complex, with expanding ripples, 

like when an object is dropped into liquid surface. Easom's function is unimodal 

like De Jong's, however more complicated, because the global optima is relatively 

small compared to the search space. Griewangk's function looks similar to De 

Jong's either, but it has a rugged surface with many regularly distributed local 

optima. Matyas's function is a plate shaped problem, it doesn't have any local 

extremes, only the global one, which is relatively easy to find. However, 

convergence to the global optima is difficult, so that this is a great benchmark 

problem to measure the accuracy and convergence rate of search algorithms. 

Rastrigin's function, also known as egg holder is a widely used, highly multimodal 

problem with regularly distributed local extremes. Rosenbrock's valley is unimodal, 



the global minimum can be found in a narrow, parabolic valley. Schaffer's second 

function is an extremely noisy optimization problem, with a lot of local optima very 

close to each other. Last but not least, Three-hump camelback looks very much like 

Rosenbrock's valley, however it has two local extremes. 

 

Table 1. 

Numerical data of benchmark problems 

 

Name Definition 
Search range and 
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3. COMPOSITION OF TEST FUNCTIONS 

 

In [2] the authors proposed a novel theoretical method to create more complex test 

functions from given basis functions. A practical framework has been described in 

[3], which extends the above theory. We have developed a software solution, which 

utilizes the practical framework to easily create customized arbitrarily difficult test 

problems. 

 

3.1 Theoretical Method 

 

In order to generate arbitrarily difficult complex test functions, the algorithm 

requires several input parameters: 

 

  [Xmin, Xmax]
D
: search range of the complex function 

  D: number of dimensions 

  fi(θ): list of basic functions 

  [xmin, xmax]
D
: search range of the basic functions 

  oi: the position of the global optima for the i-th basic function 

  bias (ψ): a vector to define the global optima. It allows the user to shift the 

optimum values of the basic functions. 

 

To define the position of global and local optimums, we have to shift the value of 

the basic function's global optimum points. In order to achieve this, the basic 

functions have to be evaluated outside the defined search range. Therefore the given 

global optimum positions of the basic functions have to be independent of the 

search range. The complex test functions can be determined using the following 

formulas: 
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Where wi is the weighting function, which ensures to keep the predefined optimum 

positions and values. The closer we get to a basic functions global optimum position 

(oi), the bigger weighting coefficient it gets. At the same time, the other basic 

functions get smaller weighting coefficients. We used three different types of 

weighting functions. 
 

3.1.1 Euclidean distance-based weighting 

 

The first weighting function is based on the Euclidean distance between the 

complex function's given point ( ) and the optimum points (oi) of the basic 

functions. 
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We have to normalize the distances: 
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If                   ( ), and   is the number of basic functions: 
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3.1.2 Gaussian weighting 

 

Smoother edges can be achieved by using the Gaussian functions to determine 

weighting coefficients. 
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3.1.3 Gabor-like weighting 

 

We can create more difficult optimization problems if the weighting function 

generates noise. However we have to make sure not to shift the original optimum 

values. The weighting function should return values between 0 and 1, its global 

maxima should be at the complex function's global optimum. 
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Where   ( ) is the k-th element of the    vector,    is the noisiness parameter, and 

   is the convergence range. Increasing the    parameter results in more noise. If 

                ( ), and   is the number of basic functions: 
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3.2 Practical Example 

 

We have generated a complex test function to demonstrate the method and expand 

the number of benchmark problems used in this paper. The input parameters are the 

following: 

 



             
 : the search range of the complex function is           

   : the number of dimensions is 2 

    ( ): we used 7 basic functions, all of them are Ackey's functions (F1). 

             
 : since we shift the optimum points of the basic functions, we don't 

have to define the basic functions' search range. 

   ( ): the   coordinates for the basic functions: [7,5; 5; 5; 0; -7,5; -5; 0] 

   ( ): the   coordinates for the basic functions: [0; 5; -5; -5; 0; 5; 0] 

  bias ( ): a vector to shift the basic functions: [3; 1; 2; 0,5; 1; 4,5; 0] 

 

Table 2. 

Surface and contour plot of complex benchmark problems 

 

Name Surface plot Contour plot 

Complex 

function with 

Euclidean 

distance-based 

weighting 

(F11) 

  

Complex 

function with 

Gaussian 

weighting 

(F12) 

  

Complex 

function with 

Gabor-like 

weighting 
(         ) 

(F13) 

  
 



In Table 2 you can see the generated Complex functions, which all consists of 7 

Ackley's basic functions. The different characteristics of the three weighting 

functions are also observable. The basic functions global optimum values have been 

shifted, therefore the complex function's global optimum value is  ( )   , can be 

found at    ,     coordinates. 

 

3.4 Novel software solution to easily generate complex test functions 

 

We have developed a software solution which utilizes the above framework to 

easily create customized arbitrarily difficult test problems. All the coding was done 

in C#, the program uses the .NET Framework. The best feature of the software is 

the automatic source code generation. As the user builds the complex function in a 

visual editor, at the same time the program generates the function's C# source code. 

Therefore the newly created optimization problem can be used straight away. 

 

4. MAIN CHARACTERISTICS OF HEURISTIC ALGORITHMS 

 

As mentioned before, the biggest advantage of heuristic algorithms is that they can 

find approximate solutions, even when the search space is excessively huge. 

However, finding the global optimum cannot be guaranteed, since they don't 

evaluate all feasible solutions. A good heuristic algorithm has to maintain balance 

between local search and global search. On one hand, it has to explore the entire 

search space properly, on the other hand search around the current best positions 

efficiently. In other words, quickly find regions with quality solutions, and don't 

waste too much time in low quality areas. Most of the time, heuristic algorithms 

have stochastic behaviour. Ideally, the final solutions, through slightly different, 

will converge to the optimal solution of the given problem. However, the way 

heuristic algorithms get to the solution is always a bit different because of the 

stochastic factor. Nowadays a lot of nature inspired heuristic algorithms emerge. 

We benchmarked twelve optimization techniques, like evolutionary (Differential 

Evolution, Cultural Algorithm, Memetic Algorithm), physical (Simulated 

Annealing, Harmony Search), biological (Artificial Immune Network) and swarm 

intelligence (Bacterial Foraging, Bees Algorithm, Krill Herd, Particle Swarm) 

optimization methods. We made the algorithms' source code available on the 

Internet. The algorithms search for the global minima, if the Rastrigin's function in 

the source code [4]. 

 

4.1 Benchmarked heuristic algorithms 

 

- Artificial Immune Network (AiNet) algorithm was developed by de Castro and 

Von Zuben to solve a clustering problem in 2000 [5]. According to its 

principles, the algorithm is related to the field of Artificial Immune Systems. 

- Bacterial Foraging Algorithm (BFOA) was first described by Liu and Passino 

in 2002 [6]. It's a relatively new swarm intelligence search algorithm. These 

techniques use the collective intelligence of numerous homogenous individuals. 

In principle, an individual entity may not be able to solve a problem on its own. 



However, if a large number of individuals form a group, the group's collective 

intelligence may be enough to solve the task. Bacterial Foraging is based on the 

foraging behavior of E. Coli bacteria colonies. 

- Bees Algorithm (BA) was published by Pham in 2005 [7]. Primarily it was 

developed to search for the global optima of continuous mathematical 

functions. It belongs to the field of swarm intelligence procedures. The Bees 

Algorithm, as the name suggests, was inspired by the foraging behavior of bees. 

- Cultural Algorithm (CA) was described by Reynolds in 1994 [8]. This 

evolutionary algorithm simulates the cultural evolution of human society. 

- Differential Evolution (DE) algorithm was developed by Storn and Price in 

1995. It belongs to the field of evolutionary algorithms. Differential Evolution 

is mainly based on Darwin's Theory of Evolution, because its main principle is 

natural selection [9]. 

- Harmony Search (HS) was published by Geem, Kim and Loganathan in 2001 

[10]. It was inspired by Jazz musicians. When they start a musical performance, 

they adapt their music to the band, creating musical harmony. If a false sound 

occurs, the band makes modifications to improve their performance. 

- Krill Herd (KH) algorithm is a novel swarm intelligence method, developed by 

Gandomi and Alami in 2012 [11]. It is inspired by the foraging behavior of the 

Antarctic krill (Euphausia superba). These krill search for food in dense 

swarms, the number of krill can be up to 10-30 thousand per cubic meters. On 

one hand, the swarm guarantees protection against predators, on the other hand 

krill can find food easier, because the swarm can scout larger areas. 

- Memetic Algorihm (MA) was developed by Moscato in 1989 [12]. The 

algorithm simulates the creation and inheritance of cultural information among 

individuals. Meme is the basic unit of cultural information (an idea, discovery, 

etc), which name derives from the biological term gene. 

- Nelder-Mead (NM) algorithm was named after its creators. Nelder and Mead 

created this heuristic in 1965 [13]. In the literature its often referred as Amoeba 

Method. Basically Nelder-Mead algorithm is a simplex search method [14]. 

- Particle Swarm Optimization (PSO) was developed by Eberhart and Kennedy. 

Nowadays its one of the most promising metaheuristic optimization algorithms. 

Particle Swarm's operation was inspired by the foraging movement of bird and 

fish swarms [15]. 

- Random Search (RS) algorithm, as the name suggests, is a simple random 

search algorithm. It takes any position in the search space with equal 

probability. The new solutions are always independent from the previous ones. 

- Simulated Annealing (SA) method was described by Kirkpatrick, Gelatt and 

Vecchi in 1983. The operation of the algorithm is based on a physical 

phenomenon. In metallurgy certain materials gain beneficial properties when 

heated and then cooled under controlled conditions. The materials' crystal 

structure is transformed during the process, because the particles take more 

favorable positions. The heuristic algorithm emulates this process to search for 

better solutions to a given problem [16]. 

 



5. NUMERICAL EXPERIMENTS 

 

Benchmarking heuristic optimization algorithms is a quite difficult and complex 

process. Due to the algorithms' stochastic factors, we had to use statistical methods 

to present satisfactory results. The heuristic algorithms did 50 Monte Carlo searches 

per test function. We specified the iteration limit for each search to be 100. The 

input parameters for the algorithms are determined based on the proposals found in 

the literature indicated. 

 

5.1 Statistical results 

 

We created a statistical table, which summarizes the performance of algorithms 

broken down by test functions. Table 3. gives an overview regarding algorithms' 

efficiency and reliability. The values are normalized, so that the optima in each row 

is 0, and the maximum is 1. These are not the absolute minima found by each 

algorithm, but the average minima for 50 Monte Carlo simulations. 

 

Table 3. 

Mean normalized optimization results for thirteen benchmark functions. 

 

 AiNet BFOA BA CA DE HS KH MA NM PSO RS SA 

F1 0,58 1 0 0,10 0 0,77 0,01 0,11 0 0 0,40 0,65 

F2 0,12 0 0 0,29 0 1 0 0,01 0 0 0,08 0,03 

F3 0,28 0,56 0 0,31 0,04 1 0,11 0,16 0,35 0 0,47 0,71 

F4 0,28 0,56 0 0,31 0,04 1 0,11 0,16 0,35 0 0,47 0,71 

F5 0,43 0,05 0,04 0,06 0 0,68 0,10 0,30 1 0 0,05 0,27 

F6 0,08 0,17 0 0,01 0 0,13 0 0,01 0,01 0 0,04 1 

F7 0,12 0 0 0,07 0,06 1 0,01 0,13 0 0 0,04 0,15 

F8 0,09 0 0,05 0,08 0,01 0,82 0,01 1 0 0 0,07 0,01 

F9 0 0,04 0 0,11 0,01 1 0,04 0,07 0,41 0 0,02 0,37 

F10 0 0 0 0,05 0,02 1 0 0,03 0,29 0 0,01 0,07 

F11 0,64 1 0 0,10 0 0,77 0,01 0,11 0 0 0,40 0,65 

F12 0,10 0 0 0,10 0 1 0,01 0,03 0,27 0 0,22 0,18 

F13 0,35 0,19 0 0,32 0 1 0,03 0,18 0,23 0,01 0,35 0,24 

Σ 2 5 11 0 7 0 3 0 5 12 0 0 

 

We used convergence plots in Table 4. to measure the convergence rate of search 

algorithms. Convergence rate shows how quickly the heuristic algorithms can find 

the optimum. The data points are the best fitness found in each iteration, averaged 

for 50 Monte Carlo simulations. 

 

Table 4. 

Convergence plots for Ackley's (F1) and Complex (F11, F12, F13) functions 

 



Name Convergence plot 

Ackley's 

function (F1) 

 

Complex 

function with 

Euclidean 

distance-
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weighting 
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Complex 

function with 

Gaussian 

weighting 

(F12) 

 

Complex 

function with 

Gabor-like 

weighting 
(        
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5.2 Benchmark conclusion 

 

We used twelve search algorithms for the thirteen benchmark problems. The test 

functions had quite diverse characteristics, like unimodal and multimodal problems 

with varying number and distribution of local extremes. Three complex benchmark 

problems were constructed by us with the software we created. After we examined 

the significant amount of statistical data, we get a picture of the algorithms' overall 

performance. If we take a look at Table 3., we can see the superiority of swarm 

intelligence methods. Bees Algorithm (BA) and Particle Swarm Optimization 

(PSO) almost always found the global optima, even in case of very difficult and 

noisy functions. The third best algorithm was an evolutionary method, the 

Differential Evolution, however sometimes it trapped at local optima. To improve 

the performance of slowly converging methods (HS, SA), we should increase the 

number of iterations. The rate of convergence could be observed very well on the 

convergence plots of Table 4. The three best algorithms' rate of convergence is 

relatively fast, and this characteristic proved to be crucial for success. Furthermore, 

the convergence plots showed the weighting functions really affect the difficulty of 

complex functions. The averaged fitness function values revealed the Complex 

function with Euclidean distance-based weighting (F11) was a thousand times 

harder to solve then the basis function (F1). However the use of Gaussian weighing 

function resulted in smoother edges, which decreased the number and distribution 

of local extremes, making it easier to find the global optima for the search 

algorithms. Probably the hardest test function was Complex function with Gabor-

like weighting, because the weighting function generated significant noise. In case 

of this test problem, the best algorithm was Differential Evolution, however its 

solution is ten times worse than the best algorithm of Euclidean distance-based 

weighting. As final conclusion, we can say that the complex functions with 

different weighting proved to be great benchmark problems. 
 

6. SUMMARY 

 

The field of numerical optimization is an always evolving science. Several new 

evolutionary optimization techniques appeared lately. We created a software 

solution, which provides practically endless possibilities to create arbitrarily 

difficult complex test functions. We benchmarked twelve optimization algorithms 

with thirteen test functions. In the future, we would like to create more difficult, 

self-made test problems, and benchmark further heuristic techniques. Based on the 

benchmark result, we will try to create novel, more efficient hybrid heuristic 

algorithms, which could be utilized in real-life structural and logistical optimization 

problems. 
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