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ABSTRACT 

Pressure strongly influences the mechanical and transport properties of rocks, such as acoustic 
velocity, porosity, permeability and resistivity. Seismic and borehole logging techniques measure 
these rock properties in order to infer subsurface information. To relate changes in seismic attributes 
to reservoir conditions, a thorough understanding of pressure effects on rock properties is essential. 
Therefore it is important to develop a petrophysical model based on simple physical assumptions 
which describes the relationship between acoustic velocity and pressure. The suggested model is 
based on the idea that the pore volume of a rock is decreasing with increasing pressure. The model 
was applied to acoustic P wave velocity data sets including measurement data published in literature 
by Xu et al. and Toksöz et al. The model parameters were determined by inversion method. The 
inversion results proved that the proposed petrophysical model performs well in practice. 
 

INTRODUCTION 

Propagation characteristics of acoustic wave carry information of important mechanical 
properties of rocks hence the determination of velocity is a common task in studying rock 
parameters both in laboratory and in-situ. The velocity of acoustic waves propagating in 
different rocks under various confining pressure values [8], [12], [16] and also under different 
pore pressures [4], [6], [10], [18] were investigated by many researchers. The phenomenon 
that the observable wave velocity is increasing because of increasing pressure is well-known 
and was explained on various rock mechanical studies [3], [11], [18]. One of the most 
frequently used mechanisms for explaining the phenomenon is based on the change of pore 
volume under pressure [3].  

General observation is that the velocity of acoustic wave propagating in rocks is in non-
linear connection with the effective pressure [2], [18]. The pressure-acoustic velocity 
connection can be characterized best by exponential function [11], [14–15]. Several empirical 
models exist to describe the pressure dependence of longitudinal acoustic wave, but these 
models usually provide the determination of the parameters of a suitably chosen formula 
based on mathematical regression method remaining the physical meaning unexplained [7], 
[15]. To reasonably interpret laboratory measurements, a quantitative model – which 
provides the physical explanation – of the mechanism of pressure dependence is required 
which includes as few parameters as possible. In the paper a petrophysical model for the 
description of the pressure dependence of propagation velocity is presented. 
 

MEASUREMENT OF ACOUSTIC WAVE VELOCITY 

The pulse transmission technique was used for P wave velocity measurements [13]. The 
measurements required special measuring equipment (Figure 1) which was compiled at the 
Department of Geophysics (University of Miskolc). The pulse generator emitted a pulse to 
the piezoelectric transmitter crystal which started an acoustic wave in the sample. The 
receiver crystal transformed the acoustic sign to electric pulse which was amplified. Another  
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pulse – the trigger – was emitted also by the pulse 
generator which synchronized the measurement 
system and the high-frequency digital 
oscilloscope which detected the arrival time of 
waves. In this way we can measure the 
propagation time of waves. Propagation velocity 
of acoustic waves can be determined by means of 
that of travel times and length of sample. 

The Department performed wave velocity 
measurements on several sandstone samples 
originated from oil drilling wells. Two typical test 
results (fine-grained sandstones) are presented in 
the paper: Samples A and B. Rock samples 
subjected to uniaxial stress were analyzed by an 
electromechanical pressing device and wave 
velocities – as a function of pressure – were 
measured at adjoining pressures (up to ~15 MPa). 
The measured longitudinal velocity versus 
uniaxial pressure of the previously mentioned 
samples is shown in Figure 2. Measurement data 
indicate that the velocity increases first strongly 

nonlinearly with increasing pressure (because the quantity of pores are relatively high in this 
region) then in the higher pressure domain the increase in velocity (with increasing pressure) 
is moderate which can be attributed to the decrease of pore volume of rock sample, i.e. the 
pores are closing with pressure. 

To confirm the reliability of the model independent data sets chosen from literature were 
processed as well. Xu et al. [17] and Toksöz et al. [13] also applied the pulse transmission 

technique for velocity measurements. Each measurement was carried out at various pressures 
up to 70/35 MPa. The sample used by Xu et al. was low-porosity Lyons sandstone, a Permian 
aeolian deposit composed of mostly well-sorted quartz grains (90%) with less than 3% of 
clay. The Lyons sandstone is composed of rounded grains with a grain size of about 0.2 mm 

  

Figure 1. Measurement layout 
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                                            (a)                                                                                       (b) 

Figure 2. 
Longitudinal velocity vs. uniaxial pressure of Sample A (a) and Sample B (b) 
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and is well cemented. Toksöz et al. analyzed a Berea medium-grained sandstone sample 
which was composed of angular grains showing microcracks and the grain contacts were 
somewhat jagged and were weakly cemented. It had an average porosity of 16%, 
permeability of 75 mD, and a bulk density of 2,61 g/cm3. 

 

THE PRESSURE DEPENDENT VELOCITY MODEL 

The response of rock to stress depends on its microstructure, constituent minerals and 
porosity, which is manifested in pressure dependence of velocity of elastic waves. Following 
Birch’s [3] qualitative considerations we assume that the main factor determining the 
pressure dependence of propagation velocity is the closure of pores, i.e. decreasing of pore 
volume. Due to increasing pressure – from the unloaded state –, first the large pores are 
closed in the rock sample then after the slower compression process of smaller pores, all 
pores are closed. Therefore we introduce the parameter V as the pore volume (per unit 
volume) of a rock. The model is restricted only for uniaxial stress state and longitudinal 
acoustic waves. 

If a stress increase dσ is created in a rock let us assume - because of the closure of pores - 
that the change of pore volume dV is directly proportional to the applied stress increase dσ 
and also the pore volume V. One can describe the two assumptions with the following 
differential equation 

                                                         VdV V d= −λ σ , (1) 

where λV is new (positive) material quality dependent petrophysical constant. The negative 
sign represents that with increasing stress the pore volume decreases. 
The solution of Eq. (1) is 

                                                     ( )0 VV V exp= −λ σ ,  (2) 

where V0 is the pore volume at stress-free state (σ = 0). We assume also a linear relationship 
between the infinitesimal change of the propagation velocity dν – due to stress increase – and 
dV 

                                                            Vdv dV= −α , (3) 

where αV is a proportionality factor. The negative sign represents that the velocity is 
increasing with decreasing pore volume. Combining this assumption with Eqs. (1–2) one can 
obtain 

                                                V V 0 Vdv V exp( )d= α λ −λ σ σ   (4) 

and after integration 
                                                           V 0 Vv K V exp( )= − α −λ σ . (5) 

At stress-free state (σ = 0) the propagation velocity ν0 can be measured which is 
computed from Eq. (5) as 0V0 VKv α−= . With this result and introducing the notation 
∆ν0 = αVV0 Eq. (5) can be rewritten in the following form  

                                                  0 0 Vv v v (1 exp( ))= + ∆ − −λ σ . (6) 

Eq. (6) provides a theoretical connection between the propagation velocity and rock 
pressure. In the framework of the model, the velocity of acoustic wave increases from v0 (at 
zero pressure) to vmax = v0 + ∆v0 (at high pressure, when all the pores are closed). So, ∆v0 can 
be considered the velocity-drop caused by the presence of pores at zero pressure [7]. Note 
that in the range of high pressures, reaching a critical pressure [1] the reversible range is 
exceeded and destruction of the sample may occur and decreasing velocity can be observed. 
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This effect is outside of the author’s present investigations. Therefore this model is valid only 
in the reversible range. 

As it was mentioned λV is a new petrophysical constant, of which physical meaning is 
necessary to be given [5]. Introducing the notation ∆v = vmax – v, (the velocity-drop caused by 
the presence of pores at pressure σ) Eq. (6) can be written in the form 

                                                   ( )0 Vv v exp∆ = ∆ −λ σ . (7) 

Experiences denote that rocks show different velocity response to the same change in the 
rock pressure or in other words the velocity shows different sensitivity to pressure. It is 
interesting to see what amount of (relative) velocity change can be measured as a 
consequence of a certain (for example unit) change in the stress. For similar purpose, the 
sensitivity functions are extensively used in the seismic, geoelectric, electromagnetic and 
well-logging literature. Hence the author introduces the (logarithmic) stress sensitivity of the 
velocity-drop ∆v = vmax – v as 

                                              ( ) ( )d ln v1 d v
S .

v d d

∆∆σ = − = −
∆ σ σ

 (8) 

Using Eq. (7) it can be seen that 

                                                         
( )

V
d ln v

S,
d

∆
λ = − =

σ
 (9) 

which shows that the petrophysical characteristic λV is the logarithmic stress sensitivity of the 
velocity-drop. 
 
CASE STUDY 

In order to prove the validity and practical applicability of the introduced petrophysical 
model, it was tested on longitudinal wave velocity data sets. The petrophysical constants (ν0, 
∆ν0, λV) appearing in the model equation (Eq. [6]) can be determined by processing 
measurement data based on the method of geophysical inversion. Linearized inversion 
method was used (principle of least squares method [9]). The inversion results for each 
sample can be seen in Table 1. The estimation errors – which are in parenthesis after each 
parameter – of the model parameters were calculated using the method given by Menke [9]. 
According to the method the elements of the main diagonal of covariance matrix in parameter 
space (cov(m)) provide the variances (σm) of model parameters, that means 

                                                      ( )
im iicovσ = m  (10) 

gives the estimated error of the i-th model parameter (i = 1,2,3 in the given problem). 
 

Table 1 

Model parameters estimated by linearized inversion 

Sample ν0 (km/s) ∆ν0 (km/s) λV (1/MPa) 

A 2,09 (±0,0141) 1,29 (±0,0163) 0,3229 (±0,0146) 
B 2,56 (±0,0072) 0,99 (±0,0086) 0,3467 (±0,0093) 

Lyons (Xu et al. 2006) 3,75 (±0,0108) 1,03 (±0,0119) 0,0611 (±0,0031) 
Berea (Toksöz et al. 1979) 3,32 (±0,0098) 0,82 (±0,0108) 0,1330 (±0,0068) 
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With the estimated parameters, the velocities can be calculated at any pressure by 

substituting them into the model equation (Eq. [6]). The results are shown in Figure 3–4. The 
solid line shows the calculated velocity-pressure function while asterisk symbols represent the 
measured data. The figures show that the calculated curves are in good accordance with the 
measured data which proves that the petrophysical model applies well in practice. For the 
characterization of the accuracy of inversion estimates the author calculated the RMS (Root 
Mean Square) value according to the following formula [9] 

                                           ( )N 2(m) (c)
k k

k 1

1
D d d 100[%] ,

N =
= − ⋅∑  (11) 
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Figure 3. 
Velocity-pressure function of sample A and B 
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where dk
(m) is the measured velocity at the k-th pressure and dk

(c) is the k-th calculated 
velocity data which can be computed by Eq. (6). To characterize the reliability of the 
suggested petrophysical model the mean spread was also calculated by [9] 

                                     ( )
M M 2

ij ij
i 1 j 1

1
S corr( ) δ ,

M(M-1) = =
= −∑∑ m   (12)

 

where δ is a Kronecker-delta symbol (which equals 1 if i = j, otherwise 0), M is the number of 
model parameters and corr(m) is the correlation matrix. Table 2 contains the calculated RMS 
and mean spread values for each sample in the last iteration step. 
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Figure 4. 
Velocity-pressure function of Lyons and Berea sandstone samples 
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                  Table 2 

Estimated RMS and mean spread values 

Sample D (%) S 

A 0,0369 0,4143 
B 0,0209 0,4160 

Lyons (Xu et al. 2006) 0,0247 0,4293 
Berea (Toksöz et al. 1979) 0,0231 0,4433 

 
It can be seen that the data misfits (RMS) were small (less than 1%), and the mean spread 

values indicate that the parameters are in moderate correlation, but the inversion results are 
still reliable. These results confirm the accuracy of the inversion estimates and the feasibility 
of the developed petrophysical model.  
 

CONCLUSIONS  

A new petrophysical model for describing the connection between the propagation 
velocity of acoustic wave and rock pressure was presented. The author found that the 
pressure dependence of acoustic velocity can be well described by a three-parameter 
exponential equation which gives also the physical explanation of pressure dependence: v = 
v0 + ∆v0 (1-exp(–λVσ)), where v0 is the velocity at zero pressure, ∆v0 is the velocity drop 
caused by the presence of pores and λV is a new petrophysical parameter. The physical 
explanation of each parameter is clarified in the paper. 

Acoustic velocity measurement data of four different rock samples (two of them were 
chosen from the literature) were used to confirm the reliability of the model. By means of 
inversion-based processing the model parameters were determined from measurement data, 
thus calculated data could be produced by using the petrophysical model. The calculated data 
matched accurately with measured data proving that the petrophysical model performs well in 
practice. Inversion results confirmed the accuracy and feasibility of the petrophysical model. 
The model was also applied on several sandstone samples (fine-, medium-, coarse-grained, 
pebbly, tuffy etc.) with success during the research. 
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LIST OF SYMBOLS 

Symbol Description Unit 
cov(m) covariance matrix in parameter space - 

D Root Mean Square (RMS) % 
dk

(c) calculated velocity at the k-th pressure value km/s 
dk

(m) measured velocity at the k-th pressure value km/s 
dν change of propagation velocity km/s 
dV change of pore volume (per unit volume) - 
dσ stress increase MPa 
K integration constant - 
M number of model parameters - 
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N number of data - 
S mean spread - 

S(σ) stress sensitivity of velocity-drop - 
v propagation velocity km/s 
V pore volume (per unit volume) - 
ν0 propagation velocity at stress-free state km/s 
V0 pore volume at stress-free state (per unit volume) - 

vmax propagation velocity at maximum pressure km/s 
αV proportionality factor - 
δ Kronecker-delta symbol - 
∆v velocity-drop at pressure σ km/s 
∆v0 velocity-drop km/s 
λV new material quality dependent petrophysical constant 1/MPa 
σ stress MPa 

imσ  estimated error of the i-th model parameter - 

 

REFERENCES 

1. Anselmetti, F. S.–Eberli, G. P.: “Sonic velocity in carbonate sediments and rock.” In: Palaz, I.–
Marfurt, K. J. (Eds.): Carbonate Seismology: SEG Geophysical Developments Series, 1997, 6, 
53–74. 

2. Best, A. I.: “The effect of pressure on ultrasonic velocity and attenuation in near-surface 
sedimentary rocks.” Geophysical Prospecting, 1997, 45, 345–364. 

3. Birch, F.: “The velocity of compression waves in rocks to 10 kilobars, Part 1.” Journal of 
Geophysics Research, 1960, 65, 1083–1102. 

4. Darot, M.–Reuschlé, T.: “Acoustic wave velocity and permeability evolution during pressure 
cycles on a thermally cracked granite.” International Journal of Rock Mechanics and Mining 
Sciences, 2000, 37, 1019–1026. 

5. Dobróka, M.–Somogyi Molnár, J.: “New petrophysical model describing the pressure 
dependence of seismic velocity.” Acta Geophysica, 2012, 60(2), 371–383. 

6. He, T.–Schmitt, D. R.: “Velocity measurements of conglomerates and pressure sensitivity 
analysis of AVA response.” Proceedings of the 76th SEG International Exposition and Annual 
Meeting, New Orleans, USA, 2006, 1–6 Oct. 

7. Ji, S.–Wang, Q.–Marcotte, D.–Salisbury, M. H.–Xu, Z.: “P wave velocities, anisotropy and 
hysteresis in ultrahigh-pressure metamorphic rocks as a function of confining pressure.” Journal 
of Geophysical Research, 2007, 112, B09204. 

8. King, M. S.: “Recent developments in seismic rock physics.” International Journal of Rock 
Mechanics and Mining Sciences, 2009, 46, 1341–1348. 

9. Menke, W.: Geophysical data analysis – Discrete inverse theory. Academic Press, Inc. London 
Ltd., 1984. 

10. Nur, A.–Simmons, G.: “The effect of saturation on velocity in low porosity rocks.” Earth and 
Planetary Science Letters, 1969, 7, 183–193. 

11. Singh, R.–Rai, C.–Sondergeld, C.: “Pressure dependence of elastic wave velocities in 
sandstones.” Proceedings of the 76th International Exposition and Annual Meeting, SEG, 2006, 
1883–1887. 

12. Stacey, T. R.: “Seismic assessment of rock masses.” Symp. on Exploration for Rock 
Engineering, Johannesburg, 1976, 2, 113–117. 

13. Toksöz, M. N.–Johnston, D. H.–Timur, A.: “Attenuation of seismic waves in dry and saturated 
rocks, I. Laboratory measurements.” Geophysics, 1979, 44(4), 681–690. 

14. Wang, Q.–Ji, S. C.–Salisbury, M. H.–Xia, M. B.–Pan, B.–Xu, Z. Q.: “Shear wave properties and 
Poisson’s ratios of ultrahigh-pressure metamorphic rocks from the Dabie-Sulu orogenic belt: 
Implications for the crustal composition.” Journal of Geophysical Research, 2005, 110, B08208. 



Explanation of Pressure Dependence of Acoustic Velocity Based… 

 

 

71 

15. Wepfer, W. W.–Christensen, N. I.: “A seismic velocity-confining pressure relation, with 
applications.” International Journal of Rock Mechanics and Mining Science, 1991, 28, 451–456. 

16. Wyllie, M. R. J.–Gregory, A. R.–Gardner, G. H. F.: “An experimental investigation of factors 
affecting elastic wave velocities in porous media.” Geophysics, 1958, 23(3), 459–493. 

17. Xu, X.–Hofmann, R.–Batzle, M.–Tshering, T.: “Influence of pore pressure on velocity in low-
porosity sandstone: Implications for time-lapse feasibility and pore-pressure study.” Geophysical 
Prospecting, 2006, 54, 565–573.  

18. Yu, G.–Vozoff, K.–Durney, D. W.: “The influence of confining pressure and water saturation on 
dynamic elastic properties of some Permian coals.” Geophysics, 1993, 58(1), 30–38. 

 
 



 

 
 
 
 
 
 


